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We obtain the total impulse in the scattering of nonspinning binaries in general relativity at fourth post-
Minkowskian order, i.e., O(G*), including linear, nonlinear, and hereditary radiation-reaction effects.
We derive the total radiated spacetime momentum as well as the associated energy flux. The latter can be
used to compute gravitational-wave observables for generic (un)bound orbits. We employ the (“in-in”)
Schwinger-Keldysh worldline effective field theory framework in combination with modern “multiloop”
integration techniques from collider physics. The complete results are in agreement with various partial
calculations in the post-Minkowskian and post-Newtonian expansion.
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Introduction.—Waveform models are an essential ingre-
dient in data analysis and characterization of gravitational
wave (GW) signals from compact binaries [1]. The level of
accuracy plays a critical role, in particular for future
detectors such as LISA [2] and ET [3]. In order to benefit
the most from the anticipated observational reach [2-9], the
modeling of GW sources must therefore continue to
develop—both through analytic methodologies [10-18]
and numerical simulations [19-21]—in parallel with the
expected increase in sensitivity with next-generation GW
interferometers.

Motivated by the effective-one-body (EOB) formalism
[22-27], the boundary-to-bound (B2B) dictionary between
unbound and bound observables [28-30], and benefiting
from powerful “multiloop” integration tools [31-61],
significant progress has been achieved in recent years in
our analytic understanding of (classical) gravitational
scattering in the post-Minkowskian (PM) expansion in
powers of G (Newton’s constant); both via effective field
theory (EFT) [62-78] and amplitude-based [79-98] meth-
odologies. The PM regime incorporates an infinite tower of
post-Newtonian (PN) corrections at a given order in G that
may increase the accuracy of phenomenological waveform
models [99,100].

However, despite some notable exceptions [26,73—
77,79,84,97,98,101], the majority of the PM computations
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have so far impacted our knowledge of the conservative
sector, with potential interactions [66,92] as well as “tail
effects” [67,93] known to 4PM order. Yet, until now,
complete results had not been obtained at the same level
of accuracy. The purpose of this Letter is therefore to report
the total change of (mechanical) momentum, a.k.a. the
impulse, for the gravitational scattering of nonspinning
bodies—including all the hitherto unknown linear,
nonlinear and hereditary radiation-reaction dissipative
effects—at O(G*), from which we derive the total radiated
spacetime momentum and GW energy flux.

Building on pioneering developments in the PN regime
[102—-109], the derivation proceeds via the EFT approach in
a PM scheme [62], extended in [76] to simultaneously
incorporate conservative and dissipative effects via the “in-
in” Schwinger-Keldysh formalism [110-114]. As discussed
in [76], the in-in impulse resembles the “in-out” counterpart
used in the conservative sector [66,67], except for its
causal structure which entails the use of retarded Green’s
functions [76]. After adapting integration tools to our
problem, the calculation of the impulse is mapped to a
series of “three-loop” mass-independent integrals. As in
previous derivations [62,63,66,67], the latter are solved via
the methodology of differential equations [32-38]. The
relativistic two-body problem is then reduced to obtaining
the necessary boundary conditions in the near-static limit.
The boundary integrals are computed using the method of
regions [45], involving potential (off-shell) and radiation
(on-shell) modes [102]. The full solution is thus boot-
strapped to all orders in the velocities from the same type
of calculations needed in the EFT approach with PN sources
[102,109,115-118]. As a nontrivial check, by rewriting
retarded Green’s functions as Feynman propagators plus a
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reactive term [76], we recover the value in [66,67] for the
Feynman-only (conservative) part. Agreement is also found
in the overlap with various PN derivations [26,27,119-124]
and partial PM results [98] obtained using the relations
in [22].

The B2B dictionary [28-30] allows us to connect
scattering data to observables for bound states via analytic
continuation. However, similarly to the lack of periastron
advance at 3PM [28,29,63], the symmetries of the problem
yield a vanishing coefficient for the radiated energy
integrated over a period of ellipticlike motion at 4PM,
trivially recovered by the B2B map. Nevertheless, since
nonlinear radiation-reaction effects do not contribute to the
integrated radiated energy at O(G*), we can then derive the
GW flux in an adiabatic approximation [30]. This allows
for the computation of radiative observables for generic
(un)bound orbits through balance equations, as in the EOB
approach [22], thus including an infinite series of velocity
corrections.

The EFT in-integrand.—Following the Schwinger-
Keldysh formalism [110-114] adapted to the EFT approach
in [76,104], the effective action is obtained via a closed-
time-path integral involving a doubling of the metric
perturbation (h ,) as well as the worldline (x§ ) degrees
of freedom, schematlcally,

eiSertl¥ar] — /’Dh*’Dh—gi{SEH[hiHSPP[hi»xai]}’ (1)

with Sgy and Spp the closed-path version of the Einstein-
Hilbert and point-particle worldline actions, respectively.
We ignore here spin degrees of freedom and finite-size
effects (see [64,65]). We also restrict ourselves to the
classical regime and therefore the path integral in (1) is
computed in the saddle-point approximation—keeping
only connected ‘tree-level’ Feynman diagrams of the
gravitational field(s)—with the compact objects treated
as external nonpropagating sources.
In this scenario, the matrix of (causal) propagators is
given by the Keldysh representation:
0 _Aadv(x - y) ) (2)
_Aret ()C -y ) 0 ’

with A, B € {+,—} and A/,q, the standard retarded and
advanced Green’s functions. The impulse, e.g., for particle
1, then follows from [76]

K*B(x—y) = i(
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to all PM orders, where the subscript “PL” stands for the
physical limit: {x,_ — 0,x,, — x,} [103]. As for the
conservative sector [66,67], we must also include iterations
from lower order solutions to the equations of motion.

=> G'AWpL. (3)
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FIG. 1. In-in Feynman topologies to 4PM order. The arrows
indicate the flow of (retarded) time. The crosses represent the
location of the derivative in the impulse in (3). The last two
diagrams are the only “self-energies” needed to 4PM [76].

The latter are obtained from the effective action in the same
physical limit. The diagrams needed to O(G*) are depicted
in Fig. 1. Mirror images (not shown) must also be
computed. See [76] for details.

The impulse is further decomposed into scalar integrals
in the perpendicular and longitudinal directions, i.e., for
particle 1 (and likewise for particle 2)

AW p P Clb bn +bn chu it 4)

with b* = b — b}, the impact parameter, b = /—b"b,, and
P = b+ /b. We use the notation [97]

=" r=uu (5)

with u,’s the incoming velocities, b - u, = 0, u2 = 1, and
I, - U, = 04 Ignoring absorption, the preservation of the
on-shell condition, p2 = m?2,implies 2p, - Ap, = —(Ap,)?,
which serves as a nontrivial consistency check.

Integration.—Similarly to the derivations in [66,67], but
incorporating the key distinction between Feynman and
retarded propagators, the components of the impulse can be
reduced to different families of integrals,

ddf 8(¢; - u, ° 1
/ 7% (£t - Uy = lO)"ikHDZ*" (6)

restricted by Dirac-0 functions. Following [66,67], the
Zi—123’s are the loop momenta, n;, v; are integers, and
a; € {1,2}, with Uy =, uy=uy. In contrast to the

conservative part, the D;’s are now various sets of retarded
and advanced propagators, e.g., {(£°4i0)>—¢2,...},
consistent with causality. The same constraints as before
apply on the external data [63], such that the relevant
integrals can only depend on y. As in our previous
calculations [66,67], we conveniently introduce the param-
eter x, defined through the relation y = (x2 +1)/2x [95],
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and compute these integrals by using dimensional regulari-
zation (in d =4 — 2¢ dimensions) and the method of
differential equations [32-38].

The integration problem then resembles the steps already
performed for the computation in [66,67], except for a few
notable differences. First of all, as before we use integration-
by-parts (IBPs) relations [39—44] and reduce (6) to a basis of
master integrals. Because of the fewer number of sym-
metries of the in-in integrand, the algebraic manipulations
become a bit more involved than with Feynman-only
propagators. But more importantly, the boundary conditions

|

cﬁ)mt 3hymymy(m3 +m3) )

21,3 (L)

in the near-static limit y ~ 1 must be computed in terms of
retarded and advanced Green’s functions. For this purpose,
we resort to the method of regions, expanding into potential
and radiation modes. The potential-only part was obtained in
[66], and recovered here from the full solution. For radiation
modes, the same type of integrals appearing in PN deriva-
tions [109], combined with leftover integrals over potential-
only modes at one and two loops, are sufficient to bootstrap
the entire answer. See [61] for more details.

Total impulse.—Inputting the values of the boundary
master integrals and translating from x to y space, we find
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32hs4arccosh?(y)  hsslog(2)arccosh(y) h56[Ll2(y+1
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See Table I for the list of 4;(y) polynomials.

The impulse for the second particle follows by exchang-
ing 1 <> 2 in the masses, incoming velocities, and impact
parameter. As expected from the calculations in [66,67],
the complete results feature dilogarithms [Li,(z)], and
complete elliptic integrals of the first [K(z)] and second
[E(z)] kind.

Conservative: As shown explicitly in [76], a (time-
symmetric) conservative contribution can be identified by
rewriting retarded Green’s functions in terms of Feynman
propagators plus a reactive term, and keeping the real part of
the Feynman-only piece, i.e., Aphons = RA p’lf-, with imagi-
nary terms cancelling out against counterparts from the
reactive terms. Performing these steps in the full in-in
integrand, and associated boundary conditions entering in
the total impulse, we readily recover the conservative results
in [66,67] including potential and radiation-reaction tail
effects.

Dissapative:  As discussed in [76], the terms stemming
off of the mismatch between Feynman and retarded
propagators incorporate dissipative effects. Needless to
say, these terms can also be read off directly from the
total result by subtracting the conservative part. Following
the analysis in [66,67], we disentangle the various pieces
according to factors of v2¢, with v, = \/y> — 1, which
signal the presence of an on-shell mode.

8(}/2 _ 1)2 (7)

Starting with a single radiation mode we encounter
instantaneous dissipative effects at linear order in the
radiation-reaction. The latter are odd under time reversal
and contribute to the b and i1, directions. We find agreement
in the overlap with known partial results in linear-response
theory in the PN literature [26,27,119-123], as well as with

the (odd) contribution to the CYZ) coefficient derived in
[27,98]. All of the remaining radiative terms involve two
radiation modes. After removing the Feynman-only (radi-
ative) conservative pieces [66,67], the leftovers contain
hereditary as well as nonlinear radiation-reaction dissipative
effects. The former enters both in the longitudinal and
perpendicular directions, whereas the latter contributes only
to the total radiated perpendicular momentum at this order
[125]. We also find perfect consistency with known non-
linear and hereditary results in the PN expansion [120-124].

See the Supplemental Material [126] and ancillary file
for explicit expressions.

Radiated energy and momentum.—From the impulse we
derive the change in the mechanical momentum of the
system (in the incoming center of mass), which gives us
the total radiated momentum, P:; = —(Ap} + Ap}). The
radiated energy for hyperboliclike motion at 4PM, given
by AEny, = Praa - [(myuy + myuy)/MT| with T = (E/M)
(M, E the total mass and energy and v = (m;m,/M?)), then
becomes

AEPM _ G4M5V2 1572° (> = 1)(27(r* = 1) h3; + 2hsg) + 64(45h3; = hys) hyo
hyp b*T 1440(y2 —1)3 144077 (y* = 1)°/2
N 16hs; 32hs, hsslog(2)arccosh(y) = hs7 log(y%)arccosh(y) hsglog(y)arccosh(y)
—arccosh®(y) | —5—13 - 2 112 - 2
(=12 (-1 4> = 1) 4> = 1) A(y? -1y
s o T
+ arccosh(y) s __ % - h56L12( ;ﬁ> + h56L12(;+_D + h57L12< A 7)
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— arccosh?(y) 16(}14;2 - 2}2153) _64(hys +hsy)\ | hag— 490y (3840y 134 + hao)
(r=1) (=17 3528007 (y* = 1)
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Expanding in small velocities (v2, = y> — 1 < 1) we find,
PAER 1568 (18608 1136w N 313602, N 76417 3560 220348\ (1216 22720\
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A notable feature of the 4PM momentum is the emergence of a total recoil along the perpendicular direction. The full result

is rather lengthy, however, performing a velocity expansion we find (with A,, = (m,

PP 37

A, G M3 1> =307 560 400

Both expressions in (9) and (10) are consistent with the
state of the art in the PN expansion [119-124]. On the other
hand, in the opposite limit, as y gets large,

V' TAEST 13696
_)
G*M52 105

rvlog(2y), (11)

which signals the presence of (logarithmic) mass singular-
ities. We return to these limits in the conclusions.

GW energy flux.—The B2B map allows us to connect the
radiated energy for the scattering process to its counterpart
over a period of an ellipticlike orbit via AE.(j) =
AEhyp(j) - AEhyp(_j) [30], where J= (poob/Gsz),
with p, = (My/T)v, is the (reduced) angular momen-
tum. However, similarly to the periastron advance at O(G?)
[28,29], this expression vanishes at 4PM. To obtain
radiative observables for generic orbits we derived instead
the energy flux. Since nonlinear radiation-reaction terms do
not contribute to the energy loss at this order we can resort
to an adiabatic expansion. By writing the PM-expanded
energy flux in an isotropic gauge as [30]

dE_ M o (GM\ ()

we find at 4PM order (see [30] for the 3PM term)

—my)/M)
166103, 14910},  23563vd, 2675703, 70079308 ;
10080 ~ 3600 ' 306880 | CO("=) (10)
0
I 23 AE
Mrer) — STV A g jhyp

42— 132 7T T (2 e
x [(y = 1)3(10y> = 10y% — 9y + 5)1?
+4(57° =8+ + 42 =3y + 1)
+ 8y —4y? — 1], (13)

with  AE(j) = Y2 (AEV /%), &=

E,=+/p%+m;.

Conclusions.—We completed the knowledge of the total
relativistic impulse in the scattering of nonspinning bodies
at 4PM order, including linear, nonlinear, and hereditary
radiation-reaction effects. We also derived the total radiated
spacetime momentum at O(G*) and extracted the GW
energy flux, which can then be used to compute observ-
ables for generic (un)bound orbits incorporating an infinite
series of velocity corrections. The most intricate part of the
calculation involves a series of master integrals with
retarded propagators, which we are able to compute to
all orders in the velocity through the methodology of
differential equations, without resorting to PN resumma-
tions. The boundary conditions in the near-static limit are
obtained via the method of regions, thus making direct
contact with derivations in the PN regime with potential
and radiation modes. We find perfect agreement with
various partial calculations in the literature. Explicit
values can be found in the Supplemental Material and
ancillary file.

(E\E,/E?),
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There are, however, some key aspects of the structure of
the impulse at 4PM order which deserve further study.
First, concerning the high-energy limit, although nontrivial
cancellations occur we find that the A®p, impulse (in
particular the 0(1‘1‘;) component) does not transition smoothly,
but rather it diverges when m; — 0 while ym;m, is held
fixed. Since all the integrals in (6) vanish in dimensional
regularization when the velocities obey the null condition
(u? = 0), the divergent terms must arise due to the
enforcement of timelike worldlines (#2 = 1) in the massive
theory from the onset. Moreover, similarly to what happens
at O(G?) [97], the total radiated energy at O(G*) also
diverges in the y > 1 limit, this time featuring a factor of
factor of log(y) with respect to the 3PM case, see (11).
We expect this behavior to be tamed in the nonperturbative
solution (see, e.g., [127,128] and references therein).

Second, there is the issue of the mass scaling of the
impulse [27], and violations thereof, e.g., [117,118]. As we
mentioned, some of the radiative contributions affect only
the total radiated momentum in the b direction, while
conserving energy. Moreover, they are even under time
reversal, see (10). To gain intuition about these terms, from
the impulse and total recoil, we derived the relative
deflection angle (see the Supplemental Material). After
expanding in small velocities, we find perfect consistency
with the (odd-in-velocity) PN values in [27]. Yet, starting at
5PN order, we encounter conservativelike (even-in-
velocity) contributions at O(z?), beyond the Feynman-
only part [129]. In principle, depending on their origin,
these terms could be incorporated into a relative
Hamiltonian. We will discuss these issues in more detail
elsewhere.

In summary, in addition to the natural connections to
GW science, e.g., [99,100], the solution of the (classical)
relativistic scattering problem at O(G*) presented here
demonstrates how the worldline EFT approach [15,18]
combined with the methodology of differential equations
and integration by regions—already successfully imple-
mented both in the conservative [62—67] and dissipative
[72-76] sectors—are very powerful tools to tackle the
entire two-body dynamics in general relativity within the
PM expansion. Complete results at higher PM orders,
including spin and tidal effects, are underway.
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