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Estimation of expectation values of incompatible observables is an essential practical task in quantum
computing, especially for approximating energies of chemical and other many-body quantum systems. In
this Letter, we introduce a method for this purpose based on performing a single joint measurement that can
be implemented locally and whose marginals yield noisy (unsharp) versions of the target set of
noncommuting Pauli observables. We derive bounds on the number of experimental repetitions required
to estimate energies up to a certain precision. We compare this strategy to the classical shadow formalism
and show that our method yields the same performance as the locally biased classical shadow protocol. We
also highlight some general connections between the two approaches by showing that classical shadows
can be used to construct joint measurements and vice versa. Finally, we adapt the joint measurement
strategy to minimise the sample complexity when the implementation of measurements is assumed noisy.
This can provide significant efficiency improvements compared to known generalizations of classical
shadows to noisy scenarios.
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Introduction.—Measurement incompatibility, one of the
defining nonclassical features of quantum theory, limits an
observer’s ability to measure certain physical properties of
a system simultaneously. While typically viewed as a
quantum resource [1,2], essential in applications such as
nonlocality [3], quantum steering [4,5], and state discrimi-
nation [6,7], incompatibility is a major issue for variational
quantum algorithms [8–11], which constitute one of the
leading candidates for attaining quantum speedups in near-
term quantum computers. These algorithms require the
estimation of expectation values of a quantum many-body
Hamiltonian (encoding, for example, a molecular system
relevant for quantum chemistry) on states occurring in the
course of a classical-quantum optimization loop. The
Hamiltonian of interest, which, in general, cannot be
measured in its eigenbasis, is described by a linear
combination of Pauli operators (tensor products of sin-
gle-qubit Pauli matrices). Estimating the expectation values
of all relevant Pauli operators, and subsequently the
Hamiltonian, involves measuring large collections of
incompatible observables.
To overcome this computational burden, many strategies

have been introduced [12–19], with a typical method
involving some grouping of the observables into compat-
ible sets, e.g., [20–27]. Another approach is a technique
called classical shadows [28], based on a practical imple-
mentation of ideas from shadow tomography [29]. This
framework involves a randomized measurement strategy,
implemented with random unitary circuits, that builds a
classical approximation of the unknown state to efficiently

estimate linear and nonlinear functions of the state [28].
The protocol readily applies to the problem of estimating
multiple expectation values of incompatible observables (as
well as many other applications [30–35]) and leads to
rigorous bounds on the sample complexity (i.e., the number
of state preparations) to achieve accurate estimations.
In this Letter, we present a new approach, conceptually

distinct from previous methods for estimating multiple
expectation values, using ideas from the theory of meas-
urement incompatibility [36–39]. While joint measurability
and commutativity are equivalent notions for projective
(von Neumann) measurements, general measurements, i.e.,
positive operator-valued measures (POVMs), do not nec-
essarily require commutativity to be measured jointly.
Importantly, a set of incompatible observables can be
measured simultaneously if a sufficient amount of noise
is added to the measurements. In our scheme, we use the
randomization of local projective measurements to simulta-
neously perform noisy (unsharp) versions of Pauli mea-
surements. This strategy is easily implementable on a
quantum computer and can be extended to a locally biased
n-qubit joint measurement which, after efficient classical
postprocessing, reproduces the outcome statistics of any
sufficiently noisy Pauli measurement (even though no
physical noise resides in the system). The outcomes of
the joint measurement are then used to efficiently construct
unbiased estimators of the expectation values of the original
noiseless observables, or some linear combination, such as a
Hamiltonian (see Fig. 1).
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Our analysis offers a new and conceptually simpler
perspective on understanding randomized protocols for
estimating multiple noncommuting observables. We derive
bounds on the sample complexity of the protocol, which we
show to be identical to those derived for locally biased
classical shadows [40], a generalized version of the original
local classical shadow protocol [28]. We then formulate
some basic connections between joint measurability and
classical shadows, showing that joint measurements can be
used to construct classical shadows and, conversely, the
shadow protocol defines a joint measurement. Finally, we
study the effects of physical noise on our protocol, adapting
the joint measurement strategy to minimize the sample
complexity when the implementation of physical measure-
ments (used to simulate parent POVMs of unsharp Pauli
observables) is affected by readout noise from the quantum
computing device [41–43]. We find that this approach can
provide significant performance improvements compared
to known generalizations of classical shadows to noisy
scenarios [44,45].
Preliminaries.—Let H be d-dimensional Hilbert space.

A measurement is described by a POVM M, with a finite
outcome set Ω, and consists of positive semidefinite
matrices (effects) MðsÞ ≥ 0, for which

P
s∈ΩMðsÞ ¼ 1,

where 1 is the identity of H. For a quantum state ρ, the
outcome probability distribution of M is given by
pðsjρÞ ¼ tr½MðsÞρ�. A finite collection of measurements
M1;…;Mm is jointly measurable (compatible) whenever
their statistics can be reproduced by classical postprocess-
ing of the statistics from a single POVM. In particular, there
exists a measurement G with outcome set ΩG such that the
effects MjðsjÞ can be obtained from G via a stochastic
transformation:

MjðsjÞ ¼
X
λ∈ΩG

Dðsjjj; λÞGðλÞ; ð1Þ

where 0 ≤ Dðsjjj; λÞ ≤ 1 and
P

sj Dðsjjj; λÞ ¼ 1, for all
j ¼ 1;…; m. Equivalently, a set of observables is said to be

jointly measurable if there exists a single POVM whose
marginals yield all effects of the individual observables;
otherwise, they are said to be incompatible [36,46]. A
simple proof of the equivalence is provided in Appendix A
in Supplemental Material [47] for completeness.
As an example, consider the qubit Pauli observables

X ≔ σx, Y ≔ σy, and Z ≔ σz and their noisy unsharp

versions Mηx

X ðxÞ ¼ 1
2
ð1þ xηxXÞ, Mηy

Y ðyÞ ¼ 1
2
ð1þ yηyYÞ,

and Mηz

Z ðzÞ ¼ 1
2
ð1þ zηzZÞ, with outcomes x; y; z ∈ f�1g

and 0 ≤ ηx; ηy; ηz ≤ 1. It is well known (cf. [39,48,49]) that
the triple is jointly measurable if and only if
ðηxÞ2 þ ðηyÞ2 þ ðηzÞ2 ≤ 1. The corresponding joint meas-
urement, whose marginals are the unsharp Pauli observ-
ables, is

Gðx; y; zÞ ¼ 1

8
ð1þ xηxX þ yηyY þ zηzZÞ: ð2Þ

Given an arbitrary set of m observables O1;…; Om and
an unknown n-qubit quantum state ρ, our aim will be to
provide estimators Ôj to the expectation values tr½Ojρ�, up
to a certain precision. In particular, we would like to know
the number of copies of ρ (i.e., the sample complexity N)
such that, for all j ¼ 1;…; m, jtr½Ojρ� − Ôjj < ϵ, with
probability at least 1 − δ.
For simple single-shot estimators, such as those for local

dichotomic observables, Hoeffding’s inequality provides
an effective way to bound the sample complexity of the
estimation protocol. In other cases, such as a Hamiltonian,
the median-of-means approach gives a simple classical
postprocessing strategy which can reduce the effect of
estimation errors [28]. This method (explained further in
Appendix B [47]) depends on the variance of the estimator
Ôj and leads to the following bound on the sample

complexity: N ¼ Oð½logðm=δÞ=ϵ2�max1≤j≤mVar½Ôj�Þ.
Estimating expectations via joint measurements.—The

observables we wish to measure simultaneously are the set
of n-qubit Pauli strings P ¼⊗n

i¼1 Pi (with Pn denoting the
set), where Pi ∈ f1; X; Y; Zg. The joint-measurability
strategy to estimate the expectation values tr½Pρ�, for all
P ∈ Pn, can be described succinctly as follows. First, we
perform a locally biased joint measurement to implement
an observable of the form (2) on each qubit system. To
obtain the outcome of the unsharp version of P, note that
each local measurement provides an outcome tuple
ðxi; yi; ziÞ; hence, we take the product of local outcomes
pi (equal to either xi, yi, or zi corresponding to Pi). We
obtain an unbiased estimator of tr½Pρ� by dividingQi pi by
the product of local noises (see also Fig. 1).
Formally, we define the locally biased joint measure-

ment Fðx1;…;xnÞ ≔⊗n
i¼1 GiðxiÞ, where each Gi [with

outcomes xi ¼ ðxi; yi; ziÞ] is of the form given in Eq. (2)
and the noise parameters ηxi , η

y
i , and ηzi are biased (and

FIG. 1. Illustration of the protocol for simultaneously estimat-
ing expectation values of Pauli observables. A joint measurement
of unsharp Pauli observables (with uniform noise η) of the form
(2) is implemented on each qubit. The estimators of expectation
values are constructed by taking a product of outcomes and
dividing by the noise.
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independent) for each qubit. The measurement F is then a
joint measurement for the noisy Pauli measurements

Mη
PðsPÞ ¼

1

2
ð1þ sPηPPÞ; ð3Þ

with sP ∈ f�1g. The noise coefficient ηP≔
Q

i∈suppðPÞη
νiðPÞ
i

is a product of local noises dependent on the individual Pauli
operators Pi, where νiðPÞ ¼ x, y, z if Pi ¼ X, Y, Z,
respectively, and suppðPÞ ¼ fijPi ≠ 1g. For example, if
P ¼ X ⊗ 1 ⊗ Z, then ηP ¼ ηx1η

z
3. The classical postprocess-

ing is defined as

DðsPjP;xÞ ¼
�
1 if sP ¼ μðPÞ;
0 if sP ¼ −μðPÞ; ð4Þ

where μ∶P ↦
Q

i∈suppðPÞ μiðPÞ is the product of the relevant
local outcomes, with μiðPÞ ¼ xi; yi; zi if Pi ¼ X, Y, Z,
respectively.
We estimate tr½Pρ� by sampling from the outputs sP of

the corresponding unsharp measurement Mη
P [from

Eq. (3)]. Importantly, for any input state ρ, the expectation
value of sP equals ηPtr½Pρ�, and, therefore, it is natural to
set an unbiased estimator as P̂ ¼ ð1=ηPÞsP. The variance
of P̂ can be easily upper bounded by Var½P̂� ≤ η−2P ,
which for the uniform case gives Var½P̂� ≤ 3wðPÞ, with
wðPÞ ¼ jsuppðPÞj.
Importantly, the joint measurement of Eq. (2) can be

implemented via classical randomization of qubit projec-
tive measurements and is, therefore, projective simula-
ble [50]. For example, the uniform case can be simulated by
a uniform mixture of four qubit projective measurements
onto opposite vertices of a cube inscribed in the Bloch
sphere (see Appendix C [47] for details) and is easily
realized on a quantum computer.
Joint measurements of Hamiltonians.—We now apply

the locally biased joint measurement F to estimate the
expectation values tr½Hρ� of a Hamiltonian H ¼P

P∈Pn
λPP, written as a linear combination of Pauli

strings, with λP ∈ R. From the outcomes of our joint
measurement on a n-qubit quantum state ρ, our single-
shot estimator of tr½Hρ� is given by

Ĥ ¼
X
P∈Pn

η−1P λPsP; ð5Þ

where the outcome sP ∈ f�1g corresponds to the effect of
the POVM defined in Eq. (3). Clearly, the estimator’s
expectation satisfies E½Ĥ� ¼ P

P η
−1
P λPE½sP� ¼ tr½Hρ�,

where the expectation value E is over the outcome statistics
of the POVM F on state ρ.
To bound the sample complexity of estimating the

expectation value of H via our joint measurement, we
obtain the following result.

Proposition 1.—The variance of the estimator Ĥ
[defined in Eq. (5)] for the Hamiltonian H is given by

Var½Ĥ� ¼
X

P;Q∈Pn

ηPQfðP;QÞ
ηPηQ

λPλQtr½PQρ� − ðtr½Hρ�Þ2;

ð6Þ

where fðP;QÞ ¼ Q
n
i¼1 fiðP;QÞ and

fiðP;QÞ ¼
�
1 if Pi ¼ 1 or Qi ¼ 1 or Pi ¼ Qi;

0 otherwise:

The noise coefficient is defined as ηPQ ¼Q
i∈suppðPQÞ η

νiðPQÞ
i , where νiðPQÞ ignores the phase of

PQ and acts as defined earlier. The proof presented in
Appendix D [47] involves calculating E½P̂ Q̂� ¼
ð1=ηPηQÞE½sPsQ�, which can be evaluated from the sta-
tistics of the joint measurement Mη

P;QðsP; sQÞ ¼P
x DðsPjP;xÞDðsQjQ;xÞFðxÞ. For example, if P ¼ X ⊗

1 and Q ¼ Y ⊗ Y such that PQ ¼ XY ⊗ Y, we have, in
the uniform noise case, Mη

P;QðsP; sQÞ ¼ 1
4
ð1þ sPηPþ

sQη2QÞ, and a simple calculation yields E½sPsQ� ¼ 0. On
the other hand, if P ¼ X ⊗ 1 and Q ¼ X ⊗ X, then
Mη

P;QðsP; sQÞ ¼ 1
4
ð1þ sPηPþ sQη2Qþ sPsQηPQÞ, and

it follows that E½sPsQ� ¼ ηtr½PQρ�.
Connections to classical shadows.—A single round of a

classical shadow protocol consists of three stages [28].
First, a quantum state is transformed via a unitary trans-
formation ρ ↦ UρU†, where U is chosen randomly from
an ensemble U. This is followed by a measurement in the
computational basis fjei∶e ∈ f0; 1gng. Finally, the unitary
U† is applied to the postmeasurement state jêi, i.e.,
jêihêj ↦ U†jêihêjU. In expectation (over the unitary
ensemble and measurement outcomes), this randomized
measurement procedure can be described by a quantum
channel M∶ρ ↦ EU∼U

P
e∈f0;1gk pðeÞU†jeihejU, where

pðeÞ ¼ hejUρU†jei. Assuming M is invertible, we
construct a classical shadow, i.e., a set of estimators
ρ̂ðlÞ ¼ M−1ðU†;ðlÞjêðlÞihêðlÞjUðlÞÞ such that E½ρ̂� ¼
M−1½MðρÞ� ¼ ρ, where l labels different experimental
realizations. The above formalism can be applied to predict
many properties of the quantum state. For example, for any
collection of observables O1;…; Om, the function Ôsh

j ¼
tr½Ojρ̂� is an unbiased estimator of tr½Ojρ�. The sample
complexity can be found by bounding the variance of Ôsh

j

with the shadow norm [28], i.e., Var½Ôsh
j � ≤ kOjk2sh, as

defined in Appendix E [47].
Two cases considered in Ref. [28] construct classical

shadows via random local qubit or global n-qubit Clifford
measurements and rely on the 3-design property of
the Clifford group to compute the shadow norm. In the
former case, the measurement procedure is equivalent to
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performing random Pauli measurements on each qubit, and
the classical shadow has the form

ρ̂ ¼ ⊗
n

i¼1
ð3U†

i jêiihêijUi − 1Þ: ð7Þ

For an arbitrary Pauli string P ∈ Pn, the shadow norm is
given by kPk2sh ¼ 3wðPÞ.
A modified locally biased classical shadow approach for

the product Clifford ensemble is described in Ref. [40] and
is applied to estimate expectation values of Hamiltonians
H ¼ P

P λPP. Rather than implementing uniformly ran-
dom Pauli measurements on each qubit, each Pauli Pi ∈
fX; Y; Zg is randomly selected according to a probability
distribution βiðPiÞ. Surprisingly, while the estimator Ĥsh of
this protocol differs from Ĥ in Eq. (5), we observe the
following relation between the two.
Observation 1.—The variance of the locally biased

classical shadow estimator in Ref. [40] is equivalent to
the variance of the joint-measurability estimator in
Proposition 1.
This is shown explicitly in Appendix E [47] and requires

ðηxi Þ2, ðηyi Þ2, and ðηzi Þ2 to be set as the probabilities βiðPiÞ of
sampling X, Y, and Z, respectively, for each qubit system. It
follows that both approaches have the same sample com-
plexity bounds. For a given Hamiltonian, strategies are
provided in Refs. [40,51] to minimize the variance by
optimizing over the probabilities βiðPiÞ. These techni-
ques can also be applied directly to optimize the joint
measurement.
We now highlight some further connections when joint

measurability is viewed in the framework of classical
shadows and vice versa.
Observation 2.—From the outcomes of the joint meas-

urement F, we can construct a locally biased classical
shadow. In the unbiased setting, this has a similar form (and
the same performance) as the shadow of Eq. (7).
For each Pauli string P ∈ Pn, we construct the product

μðPÞ ≔ Q
i∈suppðPÞ μiðPÞ from the outcomes of F. A single-

shot classical approximation of the quantum state ρ is
given by

ρ̂JM ¼ 1

2n

X
P∈Pn

η−1P μðPÞP ¼ ⊗
n

i¼1

1

2
ð1þ ei · σÞ; ð8Þ

where ei ¼ ½ðxi=ηxi Þ; ðyi=ηyi Þ; ðzi=ηzi Þ� and keik2 ¼ ðηxi Þ−2þ
ðηyi Þ−2 þ ðηzi Þ−2. It follows (see Appendix F [47]) that, for
the ith qubit, we have ρ̂JMi ¼ keikρẽi þ 1

2
ð1 − keikÞ, where

ẽi ¼ ei=keik and ρẽi ¼ 1
2
ð1þ ẽi · σÞ. If we consider uni-

form noise such that keik ¼ ð ffiffiffi
3

p
=ηÞ and take η ¼ ð1= ffiffiffi

3
p Þ,

the expression simplifies to ρ̂JMi ¼ 3ρẽi − 1, which has a
similar form to the classical shadow (7) but ρẽi is no longer
a Pauli eigenstate. Note also that both shadows give the
same variance for the estimators.

Observation 3.—Any classical shadow defines a joint
measurement and provides a sufficient condition for the
compatibility of an arbitrary set of measurements.
Suppose a classical shadow on H is constructed from a

(global) unitary ensemble U which constitutes a 2-design.
The randomized measurement procedure can be described
by a single POVM: Gðx;UÞ ¼ ð1=jUjÞU†jxihxjU, where
U ∈ U and x ∈ f0; 1gn. As a consequence of the 2-design
property, each classical snapshot is given by ρ̂x;U ¼
ðdþ 1ÞU†jxihxjU − 1 [28]. While ρ̂x;U is not necessarily
positive semidefinite, it has tr½ρ̂x;U� ¼ 1 and satisfies
E½ρ̂x;U� ¼ ρ. For a POVM Mj, we can compute
qðsjj; x; UÞ ¼ tr½MjðsÞρ̂x;U�, which, in expectation, yields
the outcome statistics of the measurement Mj.
To determine which observables can be measured jointly

from classical shadows, we require that qðsjj; x; UÞ is a
classical postprocessing function, i.e., tr½Mη

jðsÞρ̂x;U� ≥ 0,
where Mη

jðsÞ ¼ ηMjðsÞ þ ð1 − ηÞftr½MjðsÞ�=dg1. For the
set of all observables, this holds if and only if η≤1=ðdþ1Þ
(see Appendix F [47]). Thus, we can simulate the mea-
surements Mη

j for η ≤ 1=ðdþ 1Þ, from the classical post-
processing qðsjj; x; UÞ. Improved bounds can be achieved
if tr½MjðsÞU†jxihxjU� > 0 for all j. While the general
condition does not give the exact joint-measurability region
for an arbitrary collection of observables [52], the classical
shadow ρ̂JMi ¼ 3ρẽi − 1 constructed from the joint meas-
urement of Pauli observables yields the precise incompat-
ibility robustness threshold. Note that classical shadows
can also be constructed from informationally complete
measurements [53], for which the above analysis would
also apply.
Noisy joint measurements.—The unbiased classical

shadow protocol has been adapted to incorporate noise
by applying a fixed quantum channel Λ to the state after a
unitary transformation U ∈ U, i.e., UρU† ↦ ΛðUρU†Þ,
followed by the usual measurement in the computational
basis [44,45]. When the unitary ensemble U is the product
Clifford ensemble and Λ describes uncorrelated product
noise, the corresponding shadow norm can be calculated
explicitly [44].
This noise model can be equivalently seen as a noisy

measurement [described by the dual (unital) CP map Λ�

acting on the standard measurement] performed on a
perfectly prepared state. Given that the scheme already
assumes implementation of perfect product Clifford gates,
it is natural to allow implementation of arbitrary noiseless
single-qubit unitaries prior to the noisy measurement. We
note that if the noise is uncorrelated, one can design
unitaries that (on each qubit) transform the noise channel
to stochastic (classical) noise (see Appendix G [47]). It is
worth noting that stochastic readout noise is indeed one of
the main sources of errors in modern quantum devices (see,
e.g., [41–43]).
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Crucially, our joint-measurability scheme can easily
incorporate uncorrelated readout noise. To this end, we
find strategies of implementing qubit POVMs via classical
randomization of noisy qubit projective measurements and
postprocessing. This class of measurements is then used to
construct parent POVMs for unsharp versions of Pauli
observables. Specifically, we modify the semidefinite
program (SDP) derived in Ref. [50], which characterizes
qubit projective simulability to include readout noise (see
Appendix H [47]), and then incorporate the constraint into
the standard joint-measurability SDP [38].
We use the above observations to compare the perfor-

mance of classical shadows and joint-measurability
schemes when applied to the energy estimation of popular
quantum chemistry Hamiltonians in the presence of readout
noise. We note that our methods allow for easily incorpo-
rating noise into biased strategies, where ηx;y;zi are weighted
according to the frequency of certain Pauli operators in the
Hamiltonian, whereas only unbiased noisy classical shad-
ows have been developed so far [44,45]. Thus, we can
optimize the measurement strategy for each Hamiltonian
(using heuristics developed in Appendix I [47]).
The results of benchmarks for molecules and encodings

[9,40,54] are shown in Table I. For each strategy, we
calculate the upper bound on the variance [see Eq. (6) for
the joint-measurability strategy or corresponding expres-
sions for noisy classical shadows in Ref. [45]]. As a noise
model, we use the noise data from (the most noisy)
subsystems of IBM’s Washington 126-qubit quantum
device. Interestingly, even in the presence of noise, the
unbiased joint-measurability strategy gives exactly the
same performance as classical shadows. In contrast, opti-
mized strategies allow us to obtain a reduction of the
variance upper bound by as much as a factor of ≈100.
Concluding remarks.—In this Letter, we have applied a

simple joint-measurability strategy, implemented locally, to
simultaneously estimate expectation values of collections
of incompatible observables. We apply this technique to
estimate energies of quantum Hamiltonians and derive

bounds on the sample complexity of the protocol. The
application of joint measurability to quantum computing
problems, as well as the connections to classical shadows,
opens new research questions to explore. In particular, are
there deeper fundamental connections between shadows
and joint measurements? Can we gain further insight into
the efficiency of computational tasks from the limits of joint
measurability, or, conversely, can we construct optimal
joint measurements from the performance limits of classical
shadows? In general, this work motivates further studies of
measurement incompatibility, especially the characteriza-
tion of optimal joint-measurement schemes which are
projective (or noisy projective) simulable.

We thank Ingo Roth for insightful discussions regarding
the nature and mathematics of classical shadows. The
authors acknowledge financial support from the TEAM-
NET project cofinanced by the EU within the Smart Growth
Operational Program (Contract No. POIR.04.04.00-00-
17C1/18-00).

Note added.—Recently, we became aware of independent
results by Nguyen et al. [55], which offer a complementary
perspective on connecting measurement theory with
classical shadows.
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