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Spectral functions of non-Hermitian Hamiltonians can reveal the existence of topologically nontrivial
line gaps and the associated topological edge modes. However, the computation of spectral functions in a
non-Hermitian many-body system remains an open challenge. Here, we put forward a numerical approach
to compute spectral functions of a non-Hermitian many-body Hamiltonian based on the kernel polynomial
method and the matrix-product state formalism. We show that the local spectral functions computed with
our algorithm reveal topological spin excitations in a non-Hermitian spin model, faithfully reflecting the
nontrivial line gap topology in a many-body model. We further show that the algorithm works in the
presence of the non-Hermitian skin effect. Our method offers an efficient way to compute local spectral
functions in non-Hermitian many-body systems with tensor networks, allowing us to characterize line gap
topology in non-Hermitian quantum many-body models.
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Non-Hermitian (NH) Hamiltonians have risen as a rich
framework to describe the postselected quantum dynamics
of open quantum systems [1–3]. NH Hamiltonians have
been found to host a variety of phenomena lacking a
counterpart in Hermitian systems, including the non-
Hermitian skin effect (NHSE) [4–12]. In addition, NH
Hamiltonians exhibit unique topological properties: a
topologically nontrivial gap can either be a line gap or a
point gap [13–15]. The line gap is a generalization of the
spectral gap in Hermitian systems, and a topologically
nontrivial line gap is associated with topological edge
modes in open boundary conditions [14]. The point gap
topology is unique for non-Hermitian systems and it
encodes the origin of the NHSE [16–18]. Recently, the
generalization of NH topology as well as other interesting
aspects of NH physics such as parity-time symmetry
breaking [19–21] and exceptional points [22–25] to NH
many-body systems have attracted much interest [26–30].
Despite the intense interest in the study of NH many-

body physics, efficient numerical tools are lacking. In the
case of interacting one-dimensional problems, conventional
tools to study Hermitian many-body systems based on the
density matrix renormalization group (DMRG) [31] cannot
be directly applied to study NH many-body systems.
In Hermitian many-body systems, local spectral functions
can be computed efficiently for large-size systems
within the DMRG framework using correction vector
methods [32,33], time evolution [34,35], or kernel poly-
nomial algorithms [36–38]. However, for NH many-body
Hamiltonians, the kernel polynomial method (KPM) does
not apply directly [39], and an efficient algorithm to
compute local spectral functions in NHmany-body systems

is lacking. The computation of local spectral functions of
many-body excitations allows revealing many-body topo-
logical modes [38], and therefore would be of key interest
to address topological interacting NH many-body models,
in particular with a nontrivial line gap.
Here, we put forward a many-body non-Hermitian kernel

polynomial method (NHKPM) [40] to compute local
spectral functions in NH many-body systems. We imple-
ment a KPM-based algorithm to compute the local spectral
functions, where matrix-product states (MPSs) are used to
represent the states. We show that this method reveals
topological many-body spin excitations in a NH spin chain
with nontrivial line gap topology. We further show that this
method provides faithful results in the presence of the
NHSE. Our results put forward a many-body algorithm to
efficiently compute spectral functions in NH many-body
systems, which in particular allows us to characterize line
gap topology in NH many-body systems.
We first summarize how the KPM is used to compute

local spectral functions in Hermitian spin systems. For a
Hermitian S ¼ 1=2 Hamiltonian H0, the local spectral
density of Sz ¼ �1 excitations is given by the local spin
structure factor

ρðE; lÞ ¼ hGSjS−l δðEþ EGS −H0ÞSþl jGSi
þhGSjSþl δðEþ EGS −H0ÞS−l jGSi ð1Þ

where jGSi and EGS are the ground state and its energy,
and S�l ¼ Sxl � iSyl where l is the site index. Such a local
spin structure factor reveals topological spin excita-
tions [38], which can be probed with scanning tunneling
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microscopy [41–45]. Since the eigenvalues of H0 are
bounded, we can perform a shifting and a rescaling on
H0 such that EGS ¼ 0 and the eigenvalues lie in [0, 1).
In such case, ρðE ∈ ½0; 1Þ; lÞ is a bounded single-variable
function for fixed l, which is a crucial property that
allows it to be expanded in Chebyshev polynomials
TnðEÞ ¼ cosðn arccos EÞ:

ρðE; lÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
�
μ0 þ 2

X∞
n¼1

μnTnðEÞ
�

ð2Þ

where the coefficients satisfy μn¼
R
1
−1dEρðE;lÞTnðEÞ¼

hGSjS−l TnðH0ÞSþl jGSiþhGSjSþl TnðH0ÞS−l jGSi. Using the
recursion relation of Chebyshev polynomials Tnþ1ðxÞ ¼
2xTnðxÞ − Tn−1ðxÞ, the first term of μn can be computed as
μn ¼ hvjvni where jvi ¼ Sþl jGSi and

jvnþ1i ¼ 2H0jvni − jvn−1i
jv0i ¼ jvi; jv1i ¼ H0jvi; ð3Þ

and similarly for the second term. The recursive structure of
Eq. (3) allows the efficient computation of μn and ρðE; lÞ.
Furthermore, its simple algebraic structure allows it to be
implemented with MPS representation of states, where the
ground state can be computed with DMRG. Finally,
Eq. (2) is approximated with a truncation of the summation
to Nth order, where a Jackson kernel gNn ¼ f½ðN − nþ
1Þ cos nπ

Nþ1
þ sin nπ

Nþ1
cot π

Nþ1
�=ðN þ 1Þg is multiplied to the

coefficients μn to damp Gibbs oscillations [36].
We now generalize Eq. (1) to an open spin system

described with an effective NH spin HamiltonianH. Unlike
a Hermitian Hamiltonian, a NH Hamiltonian generally has
a complex spectrum fEn ∈ Cg. In addition, the left
eigenvector jΨL;ni and the right eigenvector jΨR;ni corre-
sponding to the same eigenvalue En of H are generally
different and satisfy hΨL;mjΨR;ni ¼ δmn. The eigendecom-
position of H is H ¼ P

n EnjΨR;nihΨL;nj. Thus, we define
the local dynamical spin correlator as

Sðω; lÞ ¼ hGSLjS−l δ2ðωþ EGS −HÞSþl jGSRi
þhGSLjSþl δ2ðωþ EGS −HÞS−l jGSRi; ð4Þ

where ω is a complex number, jGSL;Ri are left and
right eigenvectors corresponding to the eigenvalue
of smallest real part [29,46], and δ2ðω −HÞ ¼P

n δðℜðω − EnÞÞδðℑðω − EnÞÞjΨR;nihΨL;nj. Since ω is
complex, Sðω; lÞ is no longer a function of a single
variable, and does not have the Chebyshev expansion
Eq. (2) that allows it to be computed with the KPM [47].
We now present how a NHKPM algorithm [48] allows us

to efficiently compute Eq. (4), and more generally, generic
spectral functions of the form

fðωÞ ¼ hψLjδ2ðω −HÞjψRi; ð5Þ

where jψLi; jψRi are arbitrary states. The key observation
is, although Eq. (5) cannot be computed with the KPM
directly, it can be related to the spectral functions of the
Hermitrized form of ω −H:

H ¼
�

ω −H

ω� −H†

�
: ð6Þ

In particular, using ∂ω�ð1=ωÞ ¼ πδðℜðωÞÞδðℑðωÞÞ [56],
we can rewrite Eq. (5) as

fðωÞ ¼ 1

π
∂ω�GðE ¼ 0Þ ð7Þ

where GðEÞ ¼ hLjðE −HÞ−1jRi is the Green’s function of
Hwith jLi ¼ ð 0

jψLiÞ and jRi ¼ ðjψRi
0
Þ. SinceH is Hermitian,

its Green’s function GðEÞ has the Chebyshev expansion
Eq. (2), resulting in an expansion of fðωÞ in Chebyshev
polynomials of H:

fðωÞ ¼ 2

π2
X∞
n¼1

ð−1Þnþ1hLj∂ω�T2n−1ðHÞjRi ð8Þ

with the recursion relation ∂ω�Tnþ1ðHÞ ¼ 2ð0
1
0
0
ÞTnðHÞ þ

2H∂ω�TnðHÞ − ∂ω�Tn−1ðHÞ. Finally, the above recursion
relation on TnðHÞ is transformed into an update of vectors,
similar to Eq. (3), allowing fðωÞ to be computed with
the KPM. We use a MPS representation for the states
S�l jGSL;Ri in the computation of Eq. (4), which enables
computation for large size systems. We use a Krylov-Schur
algorithm [57] to compute the states with the smallest real
part [58].
We now use the NHKPM to identify the topological end

modes emerging in a NH many-body system. We take the
following NH S ¼ 1=2 chain with antiferromagnetic
exchange J ¼ 1 [Fig. 1(a)]:

H ¼
XL−1
l¼1

�
J þ γ

2
Sþl S

−
lþ1 þ

J − γ

2
S−l S

þ
lþ1 þ JzS

z
lS

z
lþ1

�

þ
XL
l¼1

ihzl S
z
l ð9Þ

where hzl ¼ −hz if l mod 4 ¼ 2, 3 and hzl ¼ 0 otherwise. It
is first illustrative to perform a Jordan-Wigner transforma-
tion to Eq. (9), leading to a NH interacting spinless fermion
model:

H̃¼
XL−1
l¼1

�
Jþ γ

2
c†l clþ1þ

J− γ

2
c†lþ1cl

þJz

�
c†l cl−

1

2

��
c†lþ1clþ1−

1

2

��
þ
XL
l¼1

ihzl

�
c†l cl−

1

2

�
:

ð10Þ
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When Jz ¼ 0, Eq. (10) becomes a noninteracting spinless
fermion model, which for γ ¼ 0 and nonzero hz is known to
give rise to topological end states whose real part of the
energy is 0 [59]. The bulk topology of this model is
characterized by a hidden Chern number which faithfully
predicts the number of stable end states with purely
imaginary energy [59,60]. It has been shown that in the
presence of a finite interaction Jz, a sufficiently large hz
would still give rise to the topological end states [61].
In the following we explore the non-Hermitian many-body
topology of the model via computing dynamical excita-
tions using the NHKPM algorithm, both in the absence
and presence of the NHSE. For concreteness we take
Jz ¼ 1=2J, yet analogous results can be obtained for
general values of Jz.
We first focus on a chain of length L ¼ 8 in which

we can implement the NHKPM exactly with exact diag-
onalization as a benchmark. We first compute the total
dynamical spin correlator, defined as

S̃totðωÞ ¼
����XL
l¼1

Sðω; lÞ
���� ð11Þ

where Sðω; lÞ is defined in Eq. (4) [62]. The total
dynamical spin correlator reveals the energy of the states
that have finite overlap with the ground state with one
Sz ¼ �1 excitation. We see that as hz increases, the real
part of the energy of the lowest excited states is shifted
towards 0, whereas the higher states are shifted away
from 0 [Figs. 1(b)–1(d)]. To see if the lowest excited states
are topological end states, we compute the projected local
dynamical structure factor, defined as

ρ̃ðE ∈ R; lÞ ¼
����
Z

SðEþ iy; lÞdy
����: ð12Þ

This quantity identifies the local spectral density of
Sz ¼ �1 excitations at a given real energy E. In particular,
when H is Hermitian, ρ̃ðE; lÞ is reduced to the local spin
structure factor defined in Eq. (1). Figures 1(e)–1(g) show
ρ̃ðE; lÞ for different values of hz, we see that for hz ¼ 0
the lowest states show nonvanishing spectral density in the
bulk. As hz increases to hz ¼ J the spectral density in the
bulk reduces, and eventually for sufficiently large hz ¼ 2J
the states become localized at the ends, reflecting the
nontrivial line topology in the bulk. Because of the short
chain length, finite-size effects prevent clearly observing
topological end states for hz ¼ J due to hybridization.
To approach the thermodynamic limit and demonstrate

the capabilities of the NHKPM algorithm, we now move on
to consider a chain of length L ¼ 24. As these systems are
too large to be treated by exact diagonalization, we now use
a full tensor-network implementation with the MPS in the
NHKPM algorithm. The total dynamical spin correlator
S̃totðωÞ and the projected local dynamical structure factor

ρ̃ðE; lÞ are computed for hz ¼ 0 and hz ¼ J in this case
(Fig. 2). We see from Figs. 2(a) and 2(b) that for hz ¼ J
there are clearly two states close to 0 real energy, and are
isolated from the higher states with a line gap, whereas for
hz ¼ 0 there is no such behavior. From Figs. 2(c) and 2(d)
we can observe the topological end states for hz ¼ J,
whereas for hz ¼ 0 the lowest states are mainly distributed
in the bulk. These show that the model Eq. (9) is not
topological for hz ¼ 0, and is topological for hz ¼ J even
in the presence of many-body interactions.
We now consider a finite γ term, which is known to give

rise to the NHSE [4–6]. In the noninteracting limit, the
spectrum of H in the presence of the NHSE is known to be
drastically different under different boundary conditions: in
the thermodynamic limit; the spectrum of H is purely real
under the open boundary condition (OBC), and features a
point gap under the periodic boundary condition (PBC). On
the contrary, the spectrum of the Hermitrized Hamiltonian
H is not sensitive to boundary conditions: in the thermo-
dynamic limit, the spectrum is the same under both
boundary conditions except that when ω lies in the point
gap of H, the spectrum under the OBC shows more
topological zero modes than that under the PBC [16,63].
It is due to the contribution of these additional zero modes
to the Green’s function of H in Eq. (7) that faithfully
computing the spectral function of H using NHKPM [64] is
allowed, despite the different sensitivities of the spectral

FIG. 1. (a) Sketch of the model Hamiltonian H in Eq. (9).
(b)–(d) Total dynamical spin correlator S̃totðωÞ of H with L ¼ 8,
γ ¼ 0 and (b) hz ¼ 0, (c) hz ¼ J, (d) hz ¼ 2J. (e)–(g) Projected
local dynamical structure factor ρ̃ðE; lÞ corresponding to cases
(b)–(d), respectively. Topological spin excitations with almost
zero real energy are revealed in (g).
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functions of H and H to the boundary condition. In the
interacting case, the spectrum of H has no point gaps in the
thermodynamic limit, and the above analysis no longer
holds. Thus, it is unclear whether the algorithm allows for
comparable accuracy, which we examine below. It is worth
noting that the case γ < J reduces to γ ¼ 0 under a
similarity transformation to H:

T ¼ e
P

l
lαSzl ; α ¼ ln r; r ¼

ffiffiffiffiffiffiffiffiffiffiffi
J þ γ

J − γ

s

THðJ; γ; Jz; hzÞT−1 ¼ H0ðJ0; 0; Jz; hzÞ: ð13Þ

The new uniform exchange is J0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ þ γÞðJ − γÞp
which

is approximately J for γ ¼ 0.1J. This similarity trans-
formation changes the spectral function Eq. (4) forH to the
same spectral function for H0, leading to dynamical
correlators analogous to the γ ¼ 0 case for γ ≪ J. As a
benchmark, we compute both S̃totðωÞ and ρ̃ðE; lÞ for H
with L ¼ 8, hz ¼ 2J, and γ ¼ 0.1J under the OBC
[Figs. 3(a) and 3(c)], where the results are analogous to
Figs. 1(d) and 1(g), demonstrating that the NHKPM
faithfully computes both spectral functions. We also show
S̃totðωÞ for H under the same set of parameters under the
PBC, where faithful results are obtained: the two end states
with almost 0 real energy under the OBC vanish under the
PBC. We also compute ρ̃ðE; lÞ for a longer chain with
L ¼ 24, hz ¼ J, and γ ¼ 0.1J [Fig. 3(d)], where analogous

results to Fig. 2(d) are obtained. This demonstrates the
capability of the NHKPM to compute spectral functions
and identify topological edge modes in the presence of the
NHSE. We note that in the presence of the NHSE, bulk
states become also localized at the edge. In this case, it is
the definition of the local dynamical spin correlator in
Eq. (4) that allows us to distinguish edge states from bulk
states, and image edge modes in real space. Another remark
is that in the presence of the NHSE, the condition number
[66] of H increases exponentially. Therefore, numerically
determining the exact spectrum of a Hamiltonian with the
NHSE is often very hard and time-consuming. In our
algorithm, by using Eq. (7), this hard task is converted to
the computation of the Green’s function of a Hermitian
Hamiltonian, which is relatively more controllable.
We now comment on several future perspectives for the

NHKPM algorithm. It is worth noting that in some NH
systems the physically relevant state could be the state with
the largest imaginary energy, which is the steady state of the
system after a long time evolution. The algorithm could
identify the energy of many-body excitations near that
state, and applies efficiently as long as the state is not
highly entangled. In addition to addressing topology, the
NHKPM algorithm can also address the (higher-order)
NHSE [67] by computing spectral functions defined in a
basis of solely left (right) eigenvectors, or by computing the
Green’s function [68]. Finally, we note while our algorithm
is implemented within the MPS formalism, this method-
ology can be extended to more generic tensor-network

FIG. 2. (a) and (b) Total dynamical spin correlator S̃totðωÞ of H
defined in Eq. (9) with L ¼ 24, γ ¼ 0 and (a) hz ¼ 0 and
(b) hz ¼ J. S̃totðωÞ reveals a many-body line gap in (b). (c)
and (d) Projected local dynamical structure factor ρ̃ðE; lÞ corre-
sponding to cases (a),(b), respectively. ρ̃ðE; lÞ reveals topological
many-body excitations in (d), indicating that the line gap in (b) is
topological.

FIG. 3. (a),(b) Total dynamical spin correlator S̃totðωÞ of H
defined in Eq. (9) with L ¼ 8, hz ¼ 2J and γ ¼ 0.1J under
(a) open boundary condition and (b) periodic boundary condition.
(c) Projected local dynamical structure factor ρ̃ðE; lÞ correspond-
ing to (a), showing the persistence of topological end modes in
the presence of the NHSE. (d) ρ̃ðE; lÞ of H with L ¼ 24, hz ¼ J
and γ ¼ 0.1J, showing the topological end modes in the presence
of the NHSE for a longer chain.
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algorithms [69,70] and neural-network quantum states
[71,72]. Such extensions would allow tackling many-body
interacting two-dimensional non-Hermitian problems.
To summarize, we developed a NHKPM algorithm that

can efficiently compute local spectral functions in a NH
many-body model. In particular, we showed that this
methodology allows us to compute local dynamical spin
correlators in a non-Hermitian interacting system featuring
topological excitations, directly allowing us to image the
topological end modes in real and frequency space. We
further showed that this algorithm works in the presence of
the non-Hermitian skin effect. Our results put forward a
new method to efficiently compute spectral functions of
non-Hermitian many-body systems of large sizes beyond
the capability of exact diagonalization, and make an
essential step toward the critical open problem of address-
ing nontrivial topology in non-Hermitian many-body
systems.
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