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The current interest in laboratory detection of entanglement mediated by gravity was sparked by an
information-theoretic argument: entanglement mediated by a local field certifies that the field is not
classical. Previous derivations of the effect modeled gravity as instantaneous; here we derive it from
linearized quantum general relativity while keeping Lorentz invariance explicit, using the path-integral
formalism. In this framework, entanglement is clearly mediated by a quantum feature of the field. We also
point out the possibility of observing “retarded” entanglement, which cannot be explained by an
instantaneous interaction. This is a difficult experiment for gravity, but is plausible for the analogous
electromagnetic case.
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It is often assumed that quantum gravitational effects
only show up at high-energy or short length scale regimes,
out of reach of current technology. Recent proposals
for low-energy tabletop experiments could be game
changers [1–7]. Rapid technological progress in quantum
manipulation of solid-state matter at larger microscopic
mass scales [8,9] and in gravitational measurements at
smaller mesoscopic mass scales [10] have raised expect-
ations that probing gravitational phenomena of quantum
source masses may be within reach [11]. In particular, it
might be possible to detect entanglement between two
masses generated by their gravitational interaction, or
gravity induced entanglement (GIE) [2,3].
Verifying GIE would spectacularly support what is

expected from most tentative quantum gravity theories:
spacetime has quantum properties. It would also falsify—
or put limits on—the alternatives that have been considered
in the absence of empirical evidence for quantum gravity: for
example, that gravity is a classical field obeying semi-
classical Einstein equations [12–14] or that quantum
mechanics breaks down at a scale before measurable
quantum gravity effects appear [15–17]. Specifically, a
general quantum information argument has been invoked
to argue that GIE would rule out the possibility that the

gravitational field is a local, classical field [2,3,18–21]. The
argument is based on the fact that local operations and
classical communication cannot produce entanglement
according to quantum theory [22], as well as to more general
approaches [19,21]. Then, the argument goes, observingGIE
certifies that gravity cannot be described by classical physics:
either the interaction is nonlocal, or it is nonclassical.
However, the implications of GIE detection are being

debated even when assuming linearized quantum gravity.
In this context, some claims have been made that the
experiment does not detect a quantum property of the
gravitational field [23,24]. The disagreement partially
stems from the fact that the effect has generally been
computed within the approximation of an instantaneous
interaction. Indeed, since the imagined experiment involves
masses with nonrelativistic motion placed close to each
other, in this regime gravity can effectively be described
without the need of a dynamical field. But this approach
hides a core ingredient of the theory: relativistic locality.
There is strong independent experimental evidence that the
gravitational interaction is not instantaneous.
We provide a derivation of the effect within linearized

quantum gravity, using the path-integral formalism, which
keeps the symmetries explicit. In particular, spacetime
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locality is kept manifest. Starting from two established
paradigms of physics [25]—general relativity and quantum
field theory—we show here that the quantum phases
responsible for gravity mediated entanglement production
are on-shell actions [cf. Eq. (5)], which we compute below
[cf. Eq. (8)]. This provides an explicitly Lorentz invariant,
hence spacetime local, and gauge invariant description of
GIE. This is our main result.
In our analysis, GIE turns out to be due to the fact

that the overall path integral reduces to a finite sum, in each
term of which the functional integral can be estimated
by a “semiclassical” saddle point approximation. In other
words, in this formalism the effect is due to a genuinely
quantum feature of the gravitational field: the possibility to
be in a quantum superposition of distinct semiclassical
configurations.
This implies that, in the context of linearized quantum

gravity, GIE arises due to a quantum superposition of
spacetimes [27], each propagating information causally.
Thus, information travels in a quantum superposition of
wave fronts in the field and entanglement starts being
generated only after a light crossing time has elapsed.
We consider a consequence of this local propagation in

linearized quantum gravity: the existence of an experiment
where both entanglement and relativistic locality can be
observed, thus, incompatible with an instantaneous inter-
action description. For gravity, this is currently out of reach,
but we find the analogous experiment in electromagnetism
to be feasible. Since our analysis proceeds completely
analogously for the electromagnetic case, this would
inform the outcome of the gravitational experiment.
Locally mediated entanglement from the path integral of

the quantum field.—Consider the experimental setup in [2]
that comprises two [28] massesma (a ¼ 1, 2), each with an
embedded spin-1=2 degree of freedom. At time ti, the
particles are at initial positions xia and are then put in a spin-
dependent planar motion xsaa ðtÞ, by being passed through
inhomogeneous and possibly time varying magnetic fields
Bz oriented along the axis z, perpendicular to the plane of
motion. We denote jσi ¼ ⊗ajsai the spin configurations,
where sa ∈ f↑;↓g.
The spacetime curvature is assumed to be small, and so

the linear approximation of general relativity holds. We
denote the gravitational perturbation sourced by the par-
ticles as F [29]. Preparing each of the particles in a spin
superposition state, the magnetic field Bz drives the
particles into a path superposition by coupling to the spins
sa. The field F couples to the masses ma of the moving
particles. After recombining the interferometer paths at
time t2, see Fig. 1, a spin measurement is performed on
each particle at time tf. The spins can become entangled
due to the gravitational interaction between the masses ma.
The coupling of Bz with F , the backreaction of sa on Bz,
and the backreaction of F on the particle trajectories xsaa ðtÞ
are taken to be negligible.

The transition amplitudes are computed using the path
integral

Z
DF 0Dx0 exp

�
iS
ℏ

�
; ð1Þ

where S ¼ ½x0aðtÞ;F 0ðx; tÞ;ma; Bz; σ�; Dx0 ¼ Q
aDx0a, and

the integration is over field configurations F 0ðx; tÞ and
paths of the particles x0aðtÞ [30]. The quantities ma, Bz,
and σ are not affected by the dynamics in (1).
The path that each particle takes is determined by the

spin, which does not change along the path. Thus, the joint
evolution is of the form

Ui→f ¼
X
σ

jσihσj ⊗ Uσ
i→f; ð2Þ

withUσ
i→f defined by folding (1) with initial and final states

jψ i;fi ¼ jF i;f½xi;fa �i ⊗ jxi;fa i, where the paths and field
states are assumed pure and separable at ti;f. The boundary
conditions are taken the same for all spin configurations σ.
The time tf is far enough in the future for the field to have
time to relax in the vicinity of the spin measurement. It is
sufficient to take the boundary conditions as given by the
static Newtonian field F i;f½xi;fa � of masses sitting at the
initial and final particle positions xi;fa .
The task is to calculate Uσ

i→f up to normalization. The
field integration can be heuristically performed by a sta-
tionary phase approximation, keeping the contribution of
the field configurations F ½xaðtÞ� that solve the classical
field equations sourced by particles of mass ma with
classical paths xaðtÞ and boundary conditions jψ i;fi. Then,

Uσ
i→f ∝

Z
f

i
Dx0 exp

�
iS½x0a;F ½x0a��

ℏ

�
jψfihψ ij: ð3Þ

This approximation allows us to sidestep the rigorous
definition of the path integral [32,33] and neglects quantum
fluctuations.

x

T

dti
t1

t2

t3

tf

D

x

FIG. 1. The light cone structure forbids entanglement when
the superposition happens at spacelike separation. This occurs
when d=T ≥ c.
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Between times ti and tf, for each spin configuration σ
there is a classical path xsaa determined by the magnetic field
Bz coupled to the spin sa of each particle. These paths can
be taken as orthogonal states and the remaining integral
approximated by a second stationary phase approximation,
keeping only the contribution on these paths

Uσ
i→f ∝ exp

�
iSσ½xsaa ;F ½xsaa ��

ℏ

�
jψfihψ ij: ð4Þ

Here, for a given spin configuration σ, Sσ is the on-shell
action for the joint system of spins, paths, and field.
The action S splits as S ¼ S0 þ SF . S0 does not depend

on F ; it contains the matter kinetic terms and the coupling
of Bz with the spins sa. S0 can be calculated, or measured,
separately. For simplicity, we assume the setup to be chosen
so that S0 is the same for all σ and becomes a global phase.
SF contains the on-shell contributions of the kinetic terms
for the field F and of the coupling of F with the massesma
along their motion xa: SF contains the “field mediation.”
We define

ϕσ ¼
SσF ½xsaa ;F ½xsaa ��

ℏ
: ð5Þ

Given an initially separable state jΨii ∝ jψ ii ⊗P
σ Aσjσi of field, paths, and spins, with Aσ complex

amplitudes, the final state is given by

jΨfi ¼ Ui→fjΨii ∝ jψfi ⊗
X
σ

Aσeiϕσ jσi: ð6Þ

Note that boundary states are not entangled with the
spin configurations at initial and final times. However,
depending on the values of SσF , entanglement can be
produced among the spin degrees of freedom. The phases
ϕσ are the result of the entanglement production mediated
through F [2,3,27]. We have shown that the phases ϕσ are
on-shell actions, therefore they are manifestly local and
gauge invariant. Differences of ϕσ for different σ, the
relative phases among branches, are the observables mea-
sured by the experiment. We now compute ϕσ.
Covariant phases for the gravitational field of moving

particles.—The action of linearized gravity coupled to
matter is gauge invariant. On shell, it reads

SF ¼ 1

4

Z
d4x hμνTμν; ð7Þ

where hμν is the metric perturbation and Tμν is the energy-
momentum tensor. Modeling the masses as point particles
with arbitrary timelike trajectories, their gravitational field
is the gravitational analog of the Liénard-Wiechert poten-
tials of electromagnetism [31,34,35]. The on-shell action
(7) is then given by

SF ¼ G
c4

Xa≠b
a;b

Z
dt

mambV̄
μν
a ðtabÞVbμνðtÞ

dabðtÞ − dabðtÞ · vaðtabÞ=c
; ð8Þ

where Vμν
a ¼ γav

μ
avνa, v

μ
a ¼ ðc; vaÞ, va is the three velocity,

and γa is the Lorentz factor.
The analogous formula in electromagnetism is obtained

by replacing V̄aμνVbμν→vμavbμ, m→q and G=c4→κe=2c2,
where q is the charge and κe is Coulomb’s constant. For the
notation and a detailed derivation of (8), see the Appendix
and the Supplemental Material [31]. The crucial point is
that the distance dab and the time tab are retarded quantities.
The action (8) is a sum of two terms per pair of particles.

Each term is the contribution from one particle at coor-
dinate time t interacting with the other causally, that is, with
retardation. The causal interaction between matter and the
gravitational field is thus entirely encoded in SF . This
manifestly Lorentz and gauge invariant quantity gives the
observables measured in the experiment.
Slow-motion approximation versus Newtonian limit.—

When the source is “slow moving,” meaning moving at
nonrelativistic speeds jvaj ≪ c, we have V̄μν

a ðtabÞVbμνðtÞ ¼
c4 þOðc3jvajÞ and (8) approximates

SσF ≈
1

2
G
Xa≠b
a;b

Z
dt

mamb

dσabðtÞ
: ð9Þ

In this regime the interaction is still local. The distance
dσabðtÞ ¼ jxsbb ðtÞ − xsaa ðtσabÞj depends on the retarded time
function tσabðtÞ. While the speed of light c has canceled out
in the prefactor of (9), it is still present implicitly in the
definition of tσabðtÞ. Equation (9) can be regarded as the
causal version of Newton’s law for gravitation.
A different approximation for (8) can be taken when the

source’s characteristic scale of time variation divided by c
is much larger than the distance of the source. Then,
retardation in the field can be neglected in the vicinity of the
source. This is a near-field approximation; it amounts to
replacing the retarded time functions tab in (8) with the
coordinate time t, hence modeling the gravitational inter-
action as an instantaneous interaction. The slow-moving
and near-field approximations do not imply each other;
there are physical regimes when one is applicable and the
other is not, and vice versa. When both approximations are
applied, they yield the “Newtonian limit.” Taking in
addition d to be constant during a relevant time T,
corresponding to considering a static approximation, we
recover the formula used in the literature

ϕσ ≈
Gm1m2T

ℏd
: ð10Þ

This expression for the phases ϕσ naively models an
instantaneous interaction, but it is just an approximation
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to the manifestly local on-shell action (8) of the joint
system of paths, spins, and field.
Observable effect of retardation.—The effect of retar-

dation can be quantified as the correction to the Newtonian
limit (10) by the slow-moving approximation (9).
Importantly, a qualitatively different behavior can be
observed when the spatial superposition of the particles
happens entirely within spacelike separated regions.
Take the particles at rest at a distance d for all times t < t1

and t > t2. Between t1 and t2, the particles undergo a spin-
dependent motion. The setup is such that cðt2 − t1Þ < d, so
that the nonstationary parts of the worldlines are spacelike
separated. From time t3¼ t2þd=c, the retarded position of
each particle with respect to the other is again constant (see
Fig. 1). With this setup, no entanglement can be generated.
Let xsaa ðtÞ be the displacement of particle a from its

initial position due to the coupling of the external magnetic
field Bz with its spin sa in the spin configuration σ. We
remind the reader that jσi ¼⊗a jsai. Using (9), ϕσ is a sum
of integrals that can be done by splitting the domain of
integration in four. Then,

Z
tf

ti

dt
dσ21ðtÞ

¼
Z

t1

ti

dt
d
þ
Z

t2

t1

dt
d − xs11 ðtÞ

þ
Z

t3

t2

dt
dþ xs22 ½t21ðtÞ�

þ
Z

tf

t3

dt
d
: ð11Þ

Then, the phases are of the form ϕσ ¼ Cþ ϕsa þ ϕsb þ C0

with terms that depend on, at most, one spin [36]. Thus, if
the initial states of the spins is separable, so will be the final
state. If, on the other hand, one calculates the phase in the
Newtonian limit with instantaneous interaction, the spins
result in an entangled state.
Experimental considerations.—The effect described

above can, in principle, be observed experimentally, even
though the parameters may be challenging. One possible
way to achieve spacelike separation between the two
interferometer loops of [2] is to increase the velocity v
at which the particles traverse the apparatus. We denote d as
the initial distance of the particles, Δx as the maximum
separation of the path superposition, and D ¼ d − Δx as
the minimum distance of the branches at closest approach,
see Fig. 1.
Using the Newtonian limit (10) and assuming

Δx ≪ d, the entanglement is maximal when [2] Δϕ≈
ðA=APÞ2ðΔx=dÞ2ðcT=DÞ ¼ π, where T ¼ t2 − t1, A is the
mass m, and AP is the Planck mass mP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=G
p

. For the
Coulomb case, A is the charge q and AP is the Planck
charge qP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πϵ0ℏc
p

.
As we showed above, when d ≥ cT, no entangling

interaction can take place between the particles. In other
words, one can create a situation in which the Newtonian
limit yields Δϕ ∼ 1, while the actual value predicted by (8)
and (9) is Δϕ ∼ 0. Fixing the speed v so that d=T ¼ c and

assuming Δx ≪ d at these timescales, achieving such
maximum discrepancy would require A ≫ AP. For the
gravity case, this results in magnetic fields and coherence
requirements that are not realistic for the foreseeable future
(for comparison, current proposals operate in a regime
A ≈ 10−10AP at much larger timescales, while the magnetic
field requirements for coherent splitting scale with both
mass and time).
Smaller effects of retardation are more easily measured.

Let us assume, for the sake of the argument, that one can
detect a one part in a thousand deviation from the
Newtonian approximation. One can estimate the retarded
phases by replacing T with T − d=c, which implies a
correction δðΔϕÞ ≈ ðA=APÞ2ðΔx=dÞ2. This will still require
fairly large A=AP, which is unlikely reachable for the
gravity case. For the electromagnetic case, however, ion
and electron interferometry offers a promising path [37].
For a single electron, A=AP ≈ 0.1. Assuming d ≈ 1 cm,
T ≈ 50 ns, and that the superposition is produced by
diffraction with a grating of periodicity 10 nm, it is possible
to produce Δx=d ≈ 0.3 and thus the desired δðΔϕÞ ≈ 10−3.
In an interferometer of length 10 cm, this can be achieved
with electron velocity of v ¼ 10−2c, which is reachable in
current electron microscopes.
One possible way of testing for entanglement generation

in such a scenario could be indirectly via controllable
decoherence and recoherence of the single-electron inter-
ference signals [38]: if no entanglement is generated, both
interferometers will show full (single-electron) coherence,
while any generation of entanglement would decohere the
single-electron interference signals. Both scenarios are
accessible by changing the velocity of both beams.
While this is not an easy experiment to perform, it is
plausible for the near future.
Discussion.—We considered experimental proposals

aiming at observing the entanglement between two masses
(or charges) due to the mediation of their gravitational
(or electromagnetic) interaction. Entanglement happens
because different quantum branches accumulate different
phases. The phases were previously computed using an
instantaneous interaction, which in part obscured the
relevance of the experiment.
We computed the phases from first principles and

showed there are differences in on-shell actions. They
are manifestly Lorentz invariant, hence causal, and gauge
invariant. We considered the approximation where the
particles’ motion is nonrelativistic and showed that this
is still causal as it includes the corrections for retardation.
As expected, retardation has an observable effect in the
production of mediated entanglement.
The physical picture arising from our analysis is that the

mechanism giving rise to entanglement is a quantum
superposition of macroscopically distinct dynamical field
configurations. Per Eq. (5), it is this superposition that gives
rise to different phases for each quantum branch.
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Our analysis gives a complementary point of view to
the work in [18,39–41], where it is concluded that the
mediation of quantum information takes place through the
exchange of virtual gravitons (or virtual photons). Indeed,
at the level of perturbation theory, scattering potentials can
be understood as the result of exchanging virtual particles.
We have seen here that setting the field on shell (that is,
neglecting quantum fluctuations) on each quantum branch
is sufficient to recover the causal propagation of signals.
A physical interpretation of our analysis is that quantum
information propagates casually due to the field wave
fronts being in a quantum superposition.
As an application of our results, we considered an

experiment to detect retardedly induced entanglement.
This is for the moment a gedanken experiment for gravity.
Because of the theoretical and physical analogies, it is
interesting to consider performing the analogous experi-
ment in electromagnetism. We estimate this task to be
challenging but plausible.
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Appendix: Derivation of (8).—Below we summarize
the derivation of the on-shell action (8) and explain the
notation. A more pedagogical derivation is provided in the
Supplemental Material [31], also for the electromagnetic
case.
The gauge invariance of SF can be used to simplify

computations by writing the Lagrangian in the Lorenz
gauge ∂νh̄μν ¼ 0. The action for linearized gravity coupled
to matter then simplifies to [42–45]

SF ¼ c4

64πG

Z
d4x

�
−∂ρhμν∂ρhμν þ

1

2
∂
μh∂μh

�

þ 1

2

Z
d4xhμνTμν: ðA1Þ

where d4x ¼ dtd3x and Tμν is the energy-momentum
tensor. Greek indices denote four-vectors and bold latin
letters denote three-vectors. The metric perturbation
satisfies jhμνj ≪ 1 and ημν is the Minkowski metric. We
use the notation X ¼ ημνXμν for the trace and X̄μν ¼
Xμν − 1

2
ημνX the trace reversed of a two-tensor.

The Euler-Lagrange equations for the field are

□hμν ¼ −
16πG
c4

T̄μν: ðA2Þ

When the field is taken on shell, we can integrate by parts
the terms with two derivatives of hμν in (A1) to obtain two
terms of the form h··□h·· and use (A2) to get (7).
Next, we consider the gravitational interaction ofN point

particles of masses ma. The use of point particles is an
approximation that allows one to use an explicit solution of
the field equations. So long as the size of the two matter
distributions is much smaller than their separation, so that
finite size effects can be neglected, the use of point charges
will be a good approximation.
The solution obtained here is the gravitational analog of

the well-known Liénard-Wiechert potential of electromag-
netism [34,35].
The stress-energy tensor for N point masses is

Tμνðt; xÞ ¼
XN
a¼1

maδ
ð3Þ½x − xaðtÞ�Vμν

a ðtÞ; ðA3Þ

where Vμν
a ðtÞ ¼ γaðtÞvμaðtÞvνaðtÞ with vμaðtÞ ¼ ðc; vaÞ,

where va ¼ dxa=dt is the velocity of particle a and γaðtÞ ¼
½1 − jvaðtÞj2=c2�−1=2 is the corresponding Lorentz factor.
The retarded solution of the wave equation (A2) for all
times is

hμνðt; xÞ ¼
4G
c4

Z
dx03

T̄μνðx0; trÞ
jx − x0j ; ðA4Þ

with the retarded time tr ¼ trðt; x; x0Þ defined by ctr ¼
ct − jx0 − xj. Plugging in the expression for the energy-
momentum tensor, we obtain

hμνðt;xÞ¼
4G
c4

X
a

ma

Z
d3x0

δð3Þ½x0−xaðtrÞ�V̄μν
a ðtrÞ

jx−x0j : ðA5Þ

To deal with the awkward dependence of the retarded time
tr on x0 we introduce an integration in a dummy time
variable t0 over a delta function δðt0 − t̃Þ. We can then do
the x0 integration to get

hμνðt;xÞ ¼
4G
c4

X
a

ma

Z
dt0

V̄μνðt0Þδ(t0 − t̃ðx; t; t0Þ)
jx− xaðt0Þj

: ðA6Þ

For the remaining integration in t0, we make use of the
identity δ½fðyÞ� ¼ P

i½δðy − yiÞ=j∂yfðyiÞj�, where yi are
zeros of fðyÞ. It follows that

δ(t0 − t̃ðx; t; t0Þ) ¼ δðt0 − taÞ
1 − da · vaðtaÞ=ðdacÞ

; ðA7Þ
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where the retarded time ta is implicitly defined as a function
of t and x as satisfying cðt − taÞ ¼ jx − xaðtaÞj. Here, ta is
the time at which the past light cone of the event ðt; xÞ
intersects the worldline of particle a. We also defined the
retarded displacement da ¼ daðt; xÞ ¼ x − xaðtaÞ and its
magnitude da ¼ jdaj. One then obtains the following field:

hμνðt; xÞ ¼ 4G
c4

X
a

maV̄
μν
a ðtaÞ

da − da · vaðtaÞ=c
; ðA8Þ

where the values of the field at any given spacetime point
ðt; xÞ depend exclusively on the behavior of the particles on
the past light cone of ðt; xÞ.
Next we calculate the on-shell action of N interacting

point masses. We plug in the energy-momentum tensor
(A3) for N point particles into (7) and perform the space
integration

SF ¼ 1

4

XN
b¼1

Z
dtmbV

μν
b ðtÞhμν(t; xbðtÞ): ðA9Þ

Next, we use (A8) to obtain (8)

SF ¼ G
c4

X
a;b

Z
dt

mambV̄
μν
a ðtabÞVbμνðtÞ

dab − dab · vaðtabÞ=c
: ðA10Þ

We denote as tab ¼ tabðtÞ the retarded time, at which the
past light cone of the event (t; xbðtÞ) intersects the timelike
worldline of particle a. This is defined implicitly by

cðt − tabÞ ¼ jxbðtÞ − xaðtabÞj: ðA11Þ

We also defined the retarded displacement

dab ¼ dabðtÞ ¼ xbðtÞ − xaðtabÞ; ðA12Þ

and its magnitude dab ¼ jdabj.
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