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Nonlocal correlations are a central feature of quantum theory, and understanding why quantum theory
has a limited amount of nonlocality is a fundamental problem. Since nonlocality also has technological
applications, e.g., for device-independent cryptography, it is useful to understand it as a resource and, in
particular, whether and how different types of nonlocality can be interconverted. Here we focus on
nonlocality distillation which involves using several copies of a nonlocal resource to generate one with
more nonlocality. We introduce several distillation schemes which distill an extended part of the set of
nonlocal correlations including quantum correlations. Our schemes are based on a natural set of operational
procedures known as wirings that can be applied regardless of the underlying theory. Some are sequential
algorithms that repeatedly use a two-copy protocol, while others are genuine three-copy distillation
protocols. In some regions we prove that genuine three-copy protocols are strictly better than two-copy
protocols. By applying our new protocols we also increase the region in which nonlocal correlations are
known to give rise to trivial communication complexity. This brings us closer to an understanding of the
sets of nonlocal correlations that can be recovered from information-theoretic principles, which, in turn,
enhances our understanding of what is special about quantum theory.
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Introduction.—A bound on the strength of correlations
realizable between pairs of measurement inputs and outputs
in any local theory was first shown by Bell [1,2]. This bound
is exceeded in quantum theory and there are even stronger
correlations theoretically possible without enabling signal-
ling [3,4]. One way to better understand quantum theory
is to consider it in light of possible alternative theories,
which can be compared in terms of the correlations they can
create, and the implications access to such correlations
would have. For instance, it is known that theories that
permit strong enough correlations have trivial communica-
tion complexity [5]. Furthermore, nonlocal correlations
have found applications in cryptography, where they form
a necessary resource for device-independent quantum key
distribution [6–9] and randomness expansion [10–12], for
example. Since nonlocal correlations serve as resources for
information processing, it is natural to ask about their
interconvertability. In this Letter, we look at nonlocality
distillation [13], i.e., whether with access to several copies
of some nonlocal resource we can generate stronger ones,
which would have implications for the study of device-
independent tasks in noisy regimes, for instance.
Nonlocality distillation is often analyzed in terms of

wirings [13–19], which means interacting with systems by
choosing inputs and receiving and processing outcomes
from those systems. This has the advantage that, firstly, the

distillation procedures apply to nonlocal quantum correla-
tions no matter how complicated the system these have
been obtained from and, secondly, these procedures are
applicable beyond quantum theory. A general theory will
prescribe various different ways to measure systems [in
quantum theory, for instance, a measurement is described
by a positive operator valued measure (POVM)]. Wirings
form an operationally natural subclass that can be per-
formed in any generalized probabilistic theory (GPT) [20]
(including quantum theory).
Previous work on nonlocality distillation has focused on

specific protocols for the distillation of two copies of a
nonlocal resource (see, e.g., [13–15,17,19]). The case of
more copies remains largely open, with only few specific
results [16,18]. In part, this is because analyzing nonlocality
distillation is challenging: distillation protocols act non-
linearly on the correlations and hence cannot be easily
optimized. Furthermore, applying a successful two-copy
protocol twice often decreases the nonlocality again (see,
e.g., [14] for an exception). Hence, understanding two-copy
protocols provides little insight into the n-copy case.
In this Letter, we describe a sequential adaptive algo-

rithm that uses wirings to distill nonlocality. We use this
algorithm to explore the distillable region within the set of
nonlocal correlations, and the amount of distillation pos-
sible. We demonstrate new wirings that allow distillation of
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correlations that cannot be distilled with any two-copy
wiring protocol.
Our results have implications for communication com-

plexity. In this problem, Alice with input x and Bob with
input y want to enable Alice to compute fðx; yÞ∶f0; 1gk×
f0; 1gm → f0; 1g. We ask how much communication from
Bob to Alice is required to do so. Communication complex-
ity is said to be trivial if any such function (no matter how
large k and m) can be computed using only one bit of
communication. Shared maximally nonlocal resources are
known to make communication complexity trivial in this
sense [21]. A probabilistic notion of trivial communication
complexity was introduced in [5] in which for any f we
require the existence of p > 1=2 such that Alice can obtain
the correct value of fðx; yÞ with probability at least p for all
x and y. In this Letter, when we talk about trivial
communication complexity we mean it in this probabilistic
sense. A larger set of shared states that render communi-
cation complexity trivial were found in Refs. [5,14]. Our
results further enlarge this set, demonstrating advantages of
wirings beyond two copies.
Nonlocality and wirings.—Correlations of inputs x, y

and outputs a, b are described by conditional probability
distributions PðabjxyÞ, and we refer to these as a box or a
behavior. In the context of nonlocality, we usually imagine
these correlations as generated by two parties, Alice and
Bob, who each choose an input (x and y, respectively) and
obtain an output (a and b, respectively). The correlations
they can generate according to any theory that is consistent
with special relativity have to be nonsignalling, meaning

X

b

PðabjxyÞ ¼
X

b

Pðabjxy0Þ ∀ a; x; y; y0;

and the same holds with the roles of Alice and Bob (i.e., a,
x and b, y) exchanged. A box is called local if it can be
written

PðabjxyÞ ¼
X

λ

PðajxλÞPðbjyλÞPðλÞ ∀ a; b; x; y:

In the language of Bell inequalities, there is a variable Λ
that takes the value λ with probability PðλÞ. Boxes that
cannot be written in this form are nonlocal.
In the case of two binary inputs and outputs, i.e.,

a; b; x; y ∈ f0; 1g, the set of all local boxes is the convex
hull of 16 local deterministic (L) boxes PL

i ðabjxyÞ ¼
δa;μx⊕νδb;σy⊕τ for μ; ν; σ; τ ∈ f0; 1g, i ¼ 1þ τ þ 2σ þ
4νþ 8μ, and the set of all nonsignalling boxes is the
convex hull of these local boxes and 8 extremal non local
(NL) boxes [4,22] PNL

i ðabjxyÞ ¼ 1
2
δa⊕b;xy⊕μx⊕νy⊕σ for

μ; ν; σ ∈ f0; 1g, i ¼ 1þ σ þ 2νþ 4μ. Up to symmetry,
the Clauser-Horne-Shimony-Holt (CHSH) inequality [23]
is the only one that restricts the set of local boxes.
Nonlocality can hence be quantified in terms of the

CHSH value CHSH½PðabjxyÞ� ¼ E00 þ E01 þ E10 − E11,
with Exy ¼ Pða ¼ bjxyÞ − Pða ≠ bjxyÞ.
Because we work in a black-box picture, the most

general operation we consider for each party is a wiring.
We describe here the deterministic wirings; the most
general wirings are convex combinations of these.
Consider a party with access to n boxes with inputs xj
and outputs aj with j ¼ 1;…; n. They “wire” these
together to form a new box with input x and output a.
The most general deterministic wiring comprises choosing
a box to make the first input to and then making a chosen
input, then using the output of that box to choose the
second box and the input to that second box and so on. We
label the ith box chosen jiðx; aj1 ;…; aji−1Þ and its input
xjiðx; aj1 ;…; aji−1Þ. The final outcome is chosen depending
on the overall input and all previous outcomes
aðx; aj1 ;…; ajnÞ. Thus, if Alice and Bob each do wirings
on shares of n boxes, they generate a new box PðabjxyÞ.
Our main question is then, given several copies of a

nonlocal box, are there wirings for Alice and for Bob such
that the resulting box is more nonlocal than the original? In
the case of two nonsignalling boxes each with binary inputs
and outputs, the possible wirings have been fully charac-
terized [24]. Nevertheless, even in this case, deciding
whether these can result in more nonlocality for a specific
box is computationally intensive: there are 82 deterministic
wirings that each party can perform for each input [24],
leading to a total of 824 possibilities (one of the 82 for each
input of each party). To make the computation more
tractable, we optimize the wirings of one party with a
linear program, while iterating over 822 wirings for the
other (see the Supplemental Material [25] for more detail).
We use this linear programming technique to illustrate the
regions in which distillation is possible for various two-
dimensional cross sections (CSs) of the no-signalling
polytope in Fig. 1. In this Letter, we consider three regions:

CS I∶ ωPNL
1 þ η

2
ðPL

1 þ PL
6 Þ þ ð1 − ω − ηÞPO

CS II∶ ωPNL
1 þ ηPL

1 þ ð1 − ω − ηÞPO

CS III∶ ωPNL
1 þ η

2
ðPL

1 þ PL
9 Þ þ ð1 − ω − ηÞPO; ð1Þ

where the origin (O) box PO ¼ 3=4PNL
1 þ 1=4PNL

2 is local
and η, ω ≥ 0 with ηþ ω ≤ 1.
We analyzed the distillability within these cross sections.

Among the optimal protocols we recovered several that
were previously known [15,30]. The protocols of [15]
(called ABLþ1; ABLþ2) are sufficient to characterize the
two-copy distillability in CS II (see Fig. 1), and CS III is
two-copy nondistillable. The observation that ABLþ2
achieves no distillation in CS I shows that optimal protocols
depend on the cross section.
The above analysis is generally not useful for analyzing

whether repeated distillation of a box can lead to a certain
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CHSH value. Applying a wiring that works for two boxes
to two copies of the generated box often does not give a
further increase in nonlocality, in which case a switch of
wirings is needed to distill further. While there are boxes
that cannot be distilled at all with wirings (e.g., isotropic
boxes [31]), the maximum CHSH value that can be distilled
using multiple copies of a specific resource box is
unknown. This means that we do not know how resourceful
(multiple copies of) most nonlocal boxes are for informa-
tion processing. For instance, shared boxes render com-
munication complexity trivial if their initial CHSH value is
greater than CHSH½PðabjxyÞ� ¼ 4

ffiffiffiffiffiffiffiffi
2=3

p
[5]. The complete

set of boxes that render communication complexity trivial
is unknown, although an additional region was found with
the protocol of [14].
Sequential algorithms for nonlocality distillation and

reduction of communication complexity.—While a repeated
application of a successful two-copy protocol often does
not increase the nonlocality further, there are various ways
to combine different two-copy wirings (see the
Supplemental Material [25]). Here, we focus on the specific
structure illustrated in Fig. 2. Our serial algorithm consists
in optimizing the wiring to be applied in every step, which
is done in terms of a hybrid procedure of iterating over
wirings and linear programming (see the Supplemental
Material [25] for a detailed description of the algorithm).
Applying our serial algorithm, we are able to extend the
region of nonlocal boxes known to trivialize communica-
tion complexity, see Fig. 3.
Our algorithm furthermore provides us with a way to

systematically derive new nonlocality distillation protocols
for multicopy nonlocality distillation. When performing
two steps of the serial algorithm, we find the three-copy
protocol below to be successful.

In the first step, a box is created from two copies of a boxP
with inputs (outputs) labeled x1, y1 (a1, b1) and x2, y2 (a2,
b2), respectively (first step in Fig. 2). Then this is wired to
another copy of P, Pða3b3jx3y3Þ, using the functions [32]

x1 ¼ x¼ x0; x2¼ x⊕ ā1; a¼ a1⊕ a2; x3¼ xā

y1 ¼ y¼ y0; y2¼ yb1; b¼ b1⊕ b2; y3¼ y⊕ b;

a0 ¼ a⊕ a3; b0 ¼ b⊕ b3; ð2Þ

where ⊕ is the logical XOR and z̄ ¼ z ⊕ 1. This new
protocol distills in CS II a strict superset of nonlocal boxes

FIG. 2. A serial architecture for combining nonlocal resources
(gray) in a sequential manner. The first step on the left depicts the
usual two-copy distillation scheme. Each subsequent iteration
uses another copy of the original box and the previously
generated one. Our sequential algorithm optimizes the protocol
at each round. See the Supplemental Material [25] for details.

FIG. 3. Region of trivial communication complexity in CS I.
The light-gray part was identified in [5]. The dark-gray region
includes boxes that trivialize communication complexity through
(up to four) iterations of ABLþ1. The red points (and everything
on their right) collapse communication complexity using our
serial algorithm. The black solid chord is that of Fig. 1 (left) and
indicates a change in protocol for the red points—see the
Supplemental Material [25] for details, including an analysis
of the black points in the figure.

FIG. 1. Protocols sufficient to characterize the two-copy dis-
tillability (both the distillable region and the strongest amplifi-
cation) for two CSs [cf. Eq. (1)]. The optimal two-copy protocols
for CS II are the two protocols from [15] (ABLþ1; ABLþ2),
while for CS I the protocol of [13] (called FWW here) is optimal
in some cases. The shading indicates where the corresponding
protocol is optimal, with the boundary indicated by the black
line (see the Supplemental Material [25] for details of the
protocols). The dotted curve indicates the boundary of the set
of correlations realizable in quantum theory (computed using the
conditions in [3,29]).
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compared to the previously known three-copy distillation
protocol of [16] (in contrast to CS I where the protocol of
[16] is superior). For completeness we introduce the pro-
tocol from [16] in the Supplemental Material [25] and we
refer to it as HR. The region in which the new protocol
distills in CS II is also shown in the Supplemental
Material [25].
Genuine three-copy distillation protocols.—When con-

sidering three-copy distillation, the variety of possible
protocols is vastly increased. In this case we can derive
new protocols that outperform the previous ones in terms of
the boxes for which they offer distillation. For this, we
introduce a genuine three-copy distillation protocol, which
is one that cannot be reduced to any concatenation of two-
copy protocols, i.e., is not of the form of Fig. 2. Consider
the following wiring, where ∨ denotes the logical OR

operation:

x1¼x2¼ x̄; x3¼ x̄a1∨x̄a2; a¼a1a3∨a2a3∨ā1ā2ā3;
y1¼y2¼y; y3¼yb1∨yb2∨ȳb̄1b̄2;
b¼ ȳb1b3∨ȳb2b3∨yb1b̄3∨yb2b̄3∨ȳb̄1b̄2b̄3∨yb̄1b̄2b3: ð3Þ

We find larger regions of distillable boxes as compared
to the two-copy case, see Fig. 4. In CS III no two-copy
distillation is possible, while with three copies it is.
Furthermore, the increase in the region of boxes that allow
for distillation is considerably larger than that of HR (which
is nearly indistinguishable from ABLþ1, see also Fig. III in
the Supplemental Material [25]).
Additionally we find three-copy protocols that increase

the region where communication complexity is trivial.
In particular

x1¼ x2¼ x; x3¼ xa2∨xā1∨x̄ā2a1;
a¼a3a2∨a3ā1∨ā3ā2a1; y1¼ y2¼ y; y3¼ yb2∨yb̄1;
b¼b3b2∨b3b̄1∨b̄3b̄2b1: ð4Þ

We illustrate the use of this protocol for trivializing
communication complexity in Fig. 5. In addition, we find
that in CS I, starting from any point with ω > 0 on the line
ω ¼ 1 − η we can distill arbitrarily close to a PR box by
repeatedly iterating this protocol (see Section IV of the
Supplemental Material [25]). We observe, that as compared
to using two-copy protocols (even sequentially), three-copy
protocols provide further advantages.
Additionally, all the protocols introduced here, i.e., those

of Eqs. (2)–(4) work in a full dimensional subset of the
space of no-signalling correlations. This space is 8 dimen-
sional for bipartite non-signalling boxes with binary inputs
and outputs. The form of our distillation protocols (and
many others in the literature) implies that the difference
between the initial and final CHSH value is a polynomial in
the parameters of the initial box PðabjxyÞ and hence
continuous in these parameters. Thus, for any distillable
point not on the boundary of the polytope, there exists an
eight-dimensional ball around it that is also distillable.
Conclusions.—We have found a genuine three-copy

protocol that distills nonlocality for boxes in which dis-
tillation with two copies is impossible and shown that there
are three-copy protocols that outperform all two-copy
protocols (and sequential applications thereof). For the
latter we employed an optimization technique for two-copy
wiring protocols. Although this optimization furthers our
understanding, it remains limited to cases with small
numbers of inputs and outputs and there remains much
more to discover about nonlocality distillation.
Whether the principle of nontrivial communication

complexity [5] defines a closed set of correlations [33]
that allows for a simple characterization and lies well
between quantum and nonsignalling sets is an open

FIG. 4. Region of distillation by means of the three-copy wiring
of Eq. (3) bounded by the green lines. The blue and orange lines
show the region of optimal two-copy distillation in CS I, as in
Fig. 1 (left). The green shaded area in CS I depicts where our
protocol leads to higher CHSH values than all previously known
protocols (i.e., two-copy and three-copy FWW, ABLþ1, HR). In
CS III no two-copy nonlocality distillation is possible and the
ability to distill is unlocked only when given access to at least
three copies of a nonlocal box where use of a genuine three-copy
protocol is imperative. The dotted curve indicates the boundary of
the set of quantum-realizable correlations.

FIG. 5. Regions of trivial communication complexity with
various protocols. The green region is from repeated use of
our genuine three-copy protocol of Eq. (4), the blue bounded
region is from repeated use of ABLþ1, and the dashed gray
bounded region is from repeated use of HR. In the magnified
view (right) we see a small region where our new three-copy
protocol outperforms HR and any possible two-copy protocol.
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question of interest for the foundations of quantum theory.
Indeed, finding a sensible generalized probabilistic theory
that leads to a set of correlations between the nonsignalling
and quantum set with a simple geometric description has
been a conundrum. The present work suggests that a better
understanding of multicopy nonlocality distillation may
give us insights into such a set, namely, that of a GPT
whose only restriction is imposed by the principle of
nontrivial communication complexity. This would further
advance the recent research program of experimentally
ruling out generalized probabilistic theories due to the
correlations they produce in networks [34,35].
Some of our distillation protocols work within the set of

quantum correlations (see Fig. 4). [See also [36] for recent
work aiming to distill quantum correlations.] Being wir-
ings, they are much simpler to perform than entanglement
distillation protocols [37]. It would be interesting to explore
applications of these for information processing.
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