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We explain the principles of gene expression pattern stabilization in systems of interacting, diffusible
morphogens, with dynamically established source regions. Using a reaction-diffusion model with a step-
function production term, we identify the phase transition between low-precision indeterminate patterning
and the phase in which a traveling, well-defined contact zone between two domains is formed. Our model
analytically explains single- and two-gene domain dynamics and provides pattern stability conditions for
all possible two-gene regulatory network motifs.
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Reaction-diffusion dynamics with threshold-enhanced
production is encountered in many branches of physics,
such as the study of combustion [1], neural signaling [2–4],
climate evolution [5,6], population dynamics [7–11], chemi-
cal reactions, and phase coexistence [12,13]. Reaction
diffusion dynamics is also the basic process that governs
the spreading of morphogens across a developing tissue
[14–19]. Target genes interpret morphogen signals to form
gene expression patterns (GEPs). Many aspects of the
patterning process have already been investigated, including
the scaling of GEPs as an embryo grows [20–26], the
precision of domain boundary localization in emerging
patterns [27–36], and the relations between structure and
function of gene regulatory networks (GRNs) that drive
pattern formation [37–47]. However, some important prob-
lems remain unaddressed. In particular, little is known about
systems where diffusible gene products affect the size of
their own source regions (domains). Such dynamic source
regions could expand or shrink in unbounded manner, yet,
these scenarios are mitigated by additional regulatory
mechanisms. This is encountered in spinal cord develop-
ment [48–50], limb formation [26,51–53], and Drosophila
wing and eye development [54–56]. In this Letter we
elucidate the general physical principles behind the GEP
stabilization for one and two genes as well as any combi-
nation of regulatory interactions in the system. While we
use the language of genes, our analysis is not limited to
biological context.
We focus our analysis on the contact zone between two

gene expression domains, situated at the opposite sides of a
system. The contact zone is either a gap between the
domains or their partial overlap [see Figs. 1(a)–1(g)].
The gap corresponds to the stripe of undifferentiated cells.
The overlap can be interpreted in two ways: either as the
tissue co-expressing two specific target genes [57] or as
the imprecise boundary region between domains, where the
actual cells in the developing tissue would commit to one of

the two fates [27,29]. First, we provide exact classification
of domain dynamics for one gene. Then, for two-gene
systems, we characterize the phase transition between the
phase with unbounded expansion of the overlap, leading to
the indeterminate GEP [IGEP, Fig. 1(a)] and the phase of
traveling GEP (TGEP). In the latter case, a stable, fixed-
size contact zone is formed, though it can still travel as one
entity, as the domains change size in a coordinated manner
[Figs. 1(b) and 1(c)]. The transition is controlled by the
strength of gene-gene regulatory interactions. Among
TGEPs, nonmoving stable GEPs (SGEPs) are identified,
for which the drift velocity of contact zone is exactly zero
[Figs. 1(d) and 1(e)]. We identify the exact relations
between system parameters that ensure the formation of
SGEPs. Our results are mostly analytical, supported by
numerics where necessary.
In the biological context, SGEP might be difficult to

achieve as it requires specific combinations of system
parameters. However, systems that can be mapped into
the vicinity of SGEP in parameter space are guaranteed to
form low-velocity TGEPs. Drifting GEPs were observed in
Drosophila (shifting of posterior gap gene domains)
[46,47], in spinal cord development [24,27,58] and limb
formation [51,52]. As development happens on finite
timescales, slowly moving TGEPs and SGEPs might be
similarly efficient in their biological role and both might be
practically indistinguishable in experiments.
A convenient model for investigating the GEP stability

was first introduced to study the four-gene domain size
regulation mechanism in Drosophila [59] and the stability
of a single traveling domain subjected to extrinsic pertur-
bations and intrinsic noise [60]. The model included a
reaction-diffusion equation with a step-function production
term. The approximation of interacting kinks, representing
the domain boundaries, was utilized in both works to obtain
the results. Here, we employ a similar model as in [59,60],
but instead of using a moving kink approximation, we
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identify the conservation law, which allows for exact
analytical treatment.
In this Letter we will relate the diffusible gene products

with morphogens and the gene expression domains with
morphogen source regions. We consider two morphogens
that undergo diffusion and degradation and are able to
affect each other and their own production. The space-time
concentration profile ψ iðx; tÞ (ψ i, for brevity) of each
morphogen obeys the equation

∂tψ i ¼ Di∂xxψ i − γiψ i þHiθ(Fiðψ1;ψ2Þ) ð1Þ

where we have diffusion constant Di, degradation rate γi,
production rate in activated state Hi, and Heaviside step
function θð� � �Þ. Gene expression is often characterized by
Hill-type kinetics with steep increase near the activation
threshold [33,61,62], for which the Heaviside function is a

generic approximation. The functions Fiðψ1;ψ2Þ are the
activation conditions corresponding to the two-gene motif
of the GRN. In linear approximation

Fiðψ1;ψ2Þ ≃ ϵiiψ i þ ϵijψ j − Ci: ð2Þ

Here ϵij are the interaction coefficients, ϵij > 0 indicates
activation, and ϵij < 0 the inhibition of production. Ci is
the threshold for production, possibly affected by the
external influence of the GRN on the ith node. Thus, we
consider both Ci > 0 (gene requires activation) and Ci < 0
(gene is active by default).
The regions where Fiðψ1;ψ2Þ > 0 are identified as

expression domains and constitute the GEP. The relation
between morphogen concentration ψ i and underlying GEP
is illustrated in Figs. 1(f) and 1(g).
Four effective parameters characterize the system:

λi ¼
ffiffiffiffiffiffi
Di

γi

s
; ψ̃ i ¼

Hi

γi
; Si ¼

2Ci

ϵiiψ̃ i
; χi ¼

ϵijψ̃ j

ϵiiψ̃ i
: ð3Þ

λi is the effective distance traveled by morphogen particle
before degradation and it quantifies the range of inter-
actions. ψ̃ i is the equilibrium concentration level to
which the ith morphogen tends in the absence of cross-
interactions (ϵi≠j ¼ 0) and diffusion. Si is the effective
activation threshold and χi describes the relative strength of
cross- to autointeraction for the ith gene.
In order to study a single contact zone, we supply Eq. (1)

with the initial condition

ψ iðx; 0Þ ¼ Aiθðσiðx − Xið0ÞÞÞ ð4Þ

where XiðtÞ is the position of the domain border (activation
front), and Ai is the initial concentration. σi ¼ �1 indicates
which side of the system is occupied by the ith domain.
With Ai > Ci=ϵii, these initial conditions ensure the for-
mation of only one activation front per gene. We assume
reflective boundary conditions and derive our results in the
infinite system, L → þ∞. This is a satisfying approxima-
tion to the in-the-bulk dynamics of finite-size systems, as
long as L=2 − jXiðtÞj > λi. Limitations are discussed in the
Supplemental Material (SM) [63].
A remarkable property of (1) is that ψ iðx; tÞ can be found

analytically without the prior knowledge of XiðtÞ. The
Green’s function of Eq. (1) reads

Giðx − x0; t − t0Þ ¼ e
−γiðt−t0Þ− ðx−x0Þ2

4Diðt−t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDiðt − t0Þp : ð5Þ

Then, the concentration profile ψ iðx; tÞ reads

FIG. 1. Exemplary dynamics of GEPs generated by Eq. (1), for
self-activating (ϵii > 0) and cross-repressive (ϵi≠j < 0) gene
interactions. Other parameters are chosen in the biologically
relevant range (see SM). Red and blue shading indicate domains
of active morphogen production, the positions of domain boun-
daries are found numerically [XiðtÞ, red and blue solid line] and
analytically (gray and black lines). (a) IGEP, unbounded ex-
pansion of overlap. (b),(c) TGEP, fronts move to the left, for
t≲ 2 h (dotted lines) front velocities vi are found from Eq. (10).
For t ≳ 4 h (dashed lines) common velocity v and width ΔX are
found from Eq. (11). c0 is determined numerically to match the
analytical and numerical results. (d),(e) SGEP, v ¼ 0, parameters
satisfy stability conditions (14). Contact zone is an overlap [(b),
(d)] or a gap [(c), (e)]. (f),(g) relation between morphogen
concentration profiles, GEP, and cellular interpretation of GEP.
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ψ iðx; tÞ ¼
Z þ∞

−∞
dx0 Giðx − x0; tÞψ iðx0; 0Þ

þ σiHi

Z
t

0

dt0
Z

σi∞

Xiðt0Þ
dx0Giðx − x0; t − t0Þ: ð6Þ

In order to obtain XiðtÞ one must solve the free boundary
problem Fiðψ1ðXiðtÞ; tÞ;ψ2ðXiðtÞ; tÞÞ ¼ 0 or explicitly

ϵ11ψ1ðX1ðtÞ; tÞ þ ϵ12ψ2ðX1ðtÞ; tÞ ¼ C1

ϵ21ψ1ðX2ðtÞ; tÞ þ ϵ22ψ2ðX2ðtÞ; tÞ ¼ C2: ð7Þ

By inserting (6) into (7), one finds that X1ðtÞ and X2ðtÞ are
defined by a system of nonlinear integral equations.
Let us first consider the system without cross-inter-

actions between target genes (ϵi≠j ¼ 0), so (7) reduces to
ϵiiψ iðXiðtÞ; tÞ ¼ Ci. This means that the number of par-
ticles at the domain boundary is constant. For t ≫ γ−1i we
can neglect the influence of initial conditions and multiply
this equation by ðϵiiψ̃ iÞ−1 to obtain

Si
2
¼ σiγi

Z
t

0

dt0
Z

σi∞

Xiðt0Þ
dx0 Gi½XiðtÞ − x0; t − t0�: ð8Þ

This shows that XiðtÞ must evolve in such way that the
value of the space-time integral of Gi½XiðtÞ − x0; t − t0� is
conserved. This integral represents the number of particles
arriving at XiðtÞ from the activated region, as Gi is also the
transition probability. Graphical analysis, as in Fig. 2(a),
shows that this is satisfied for

XiðtÞ ¼ vitþ X̃i ð9Þ

where X̃i is a constant. In the SM we also show that
_XiðtÞ ¼ vi is the attractor of dynamics. Similar results were
rigorously proven by Terman [64], but our method can be
easily extended to the interacting case. The ansatz (9)
allows explicit integrations in Eq. (8) (see SM), which, in
the limit t → þ∞, leads to the equation

Si ¼ 1þ σi
viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Diγi þ v2i
p : ð10Þ

In Fig. 2(b) we show vi calculated from (10) (see SM),
which indicates a few different regimes of dynamics. First,
let us consider Ci > 0, which means the gene is inactive by
default. For 0 < Si < 1 the expression domain expands
with constant velocity, while for 1 < Si < 2 it shrinks. For
Si ¼ 1 it is long-term stable. Si > 2 and Si < 0 translate
into ϵiiψ̃ i < Ci. This means the long-term concentration is
too low to sustain activation and an activated domain must
collapse in its entire volume over finite time.
For Ci < 0, gene is spontaneously expressed everywhere

in undifferentiated tissue and traveling fronts do not form,
see Fig. 2(c). For εiiψ̃ i > Ci, the long-term concentration

tends to ψ̃ i, but for εiiψ̃ i < Ci, the system saturates at the
highest expression level just before inactivation, which is
Ci=ϵii. This requires ϵii < 0.
Let us now consider the fully interacting case, that is

ϵij ≠ 0 for i ≠ j. We can repeat the reasoning for the
noninteracting case, though this time it is the sum of the
autointeraction integral and cross-interaction integral that
has to be conserved. The ansatz (9) holds, but with the
important change that both velocities must be the same, i.e.,
v1 ¼ v2 ¼ v (see SM). This allows us to turn (7) into the
algebraic problem

Si ¼ ð1þ σiViðvÞÞ þ χi½1þ ð−1ÞiσjsgnðΔXÞ

þ σje
vΔX
2Dj

ðð−1Þiþ1−sgnðΔXÞ
VjðvÞ ÞðVjðvÞ − ð−1ÞisgnðΔXÞÞ� ð11Þ

where ViðvÞ ¼ ðv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Diγi þ v2

p
Þ and ΔX ¼ X̃2 − X̃1 is

the relative distance between the domain boundaries. We
will now discuss the properties of (11) using χi (the ratio of
cross- to autointeraction strength) as control parameters.
First of all, Eq. (11) indicates the existence of a phase

transition between the IGEP and TGEP phases. For clearest
presentation, let us consider two autoactivating and cross-
inhibiting genes (χi < 0), whose expression domains
spontaneously expand (0 < Si < 1). The order parameter
of transition reads

FIG. 2. (a) Illustration of Eq. (8), defining the evolution of
domain boundary XiðtÞ. Density maps in the background show
the kernel Gi½x − XiðtiÞ; t − ti� at two moments, t1 and t2. Color
indicates the space-time area of integration in Eq. (8). The
integral of Gi½x − XiðtiÞ; t0 − ti� is asymptotically conserved on
the line Xiðt0Þ ¼ vit0 þ X̃i. (b) Single domain dynamics of
noninteracting gene for σi ¼ −1 (domain in the region
ð−∞; XiðtÞ�), for Ci > 0. vi is calculated from Eq. (10). Insets
show corresponding concentration profiles ψ iðx; tÞ in different
regimes (Si ¼ 0.5, 1.0, 1.5, 2.1, from left to right). (c) Single-
gene dynamics for Ci < 0 (spontaneous expression). For
Ci=ϵii > ψ̃ i concentration saturates at ψ̃ i (lower), for Ci=ϵii <
ψ̃ i at Ci=ϵii (upper).
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Δv ¼ lim
t→þ∞

½ _X2ðtÞ − _X1ðtÞ� ð12Þ

which is the long-term difference of domain wall velocities.
Δv dependence on ðχ1; χ2Þ is shown in Fig. 3(a). In the
IGEP phase Δv ≠ 0, which means that two domains ever-
increase their overlap and their boundaries eventually adopt
two constant, but different velocities. The t → þ∞ value of
ΔX does not exist and Eqs. (11) have no solution. We
analytically estimated that the IGEP phase is no smaller
than the square 0 > χi > ðSi − 1Þ=2 on the ðχ1; χ2Þ plane
(see SM). However, simulations show that the boundary of
the IGEP phase coincides with the line ΔX ¼ −∞ on the
ðχ1; χ2Þ plane.
In the TGEP phase Δv ¼ 0 and Eqs. (11) can be solved

for v and ΔX. In this case, upon meeting, the two growing
domains establish a contact zone of width ΔX. TGEP
domains can still change their size by one expanding and
the other shrinking, but the contact zone travels as one
entity, preserving ΔX [see Figs. 1(b) and 1(c)]. ΔX and v as
the functions of ðχ1; χ2Þ are shown in Figs. 3(b) and 3(c).
The IGEP-TGEP transition demonstrates that establishing a
meaningful GEP requires certain minimal strengths of
cross-interactions, below which no patterning is possible.
Once the TGEP phase is entered, further increase in
interaction strengths drives ΔX from the complete overlap
on the critical line (ΔX ¼ −∞) to the emergence of the
gap (ΔX ≥ 0).

Finally, SGEPs can be identified as TGEPs with v ¼ 0.
The SGEPs occupy a line on the ðχ1; χ2Þ plane [Figs. 3(b)
and 3(c)]. In this case Eqs. (11) are overdefined and
ensuring that ΔX exists leads to the stability conditions.
Let us introduce the auxiliary variable Ri, such that

Ri ¼ ðSi − 1Þ=χi − 1 ð13Þ

then, the stability conditions read

ð1− jR1jÞλ2 ¼ð1− jR2jÞλ1 ;
σ1sgnðR1Þ¼−σ2sgnðR2Þ; −1≤Ri ≤ 1: ð14Þ

When these dependencies are satisfied, two activated
domains form a SGEP with the distance between domain
boundaries given by (for i ≠ j)

ΔX ¼ ð−1ÞjσisgnðRjÞλi lnð1 − jRjjÞ: ð15Þ

SGEPs are perfectly stable, i.e., they survive for
t → þ∞, but the first of conditions in (14) is restrictive
and imposes strong constraints on the parameters.
Nevertheless, the SGEP indicates the center of low-velocity
plateau in the TGEP phase [see Fig. 3(b)]. The biologically
relevant part of this plateau can be estimated to �24 μm=h,
based on the shift of gap gene domains in Drosophila
[46,65,66] (see SM).
These stability conditions (14) are valid in the entire

range of Si and χi, not only for 0 < Si < 1 and χi < 0.
This allows us to discuss the stability of all 64 two-gene
network motifs, described by six constants (four ϵij and two
Ci), which can be either > 0 or < 0. We will call a trio
ðϵii; ϵi≠j; CiÞ together with node i the “half-motif,” as two
such trios form a full two-gene motif. There are only eight
half-motifs. ðϵii; ϵi≠j; CiÞ can be mapped into the pair of
ðχi; SiÞ via Eqs. (3). In stable systems, parameters must be
chosen in such a way that point ðχ1; S1Þ corresponds to
point ðχ2; S2Þ with the same ΔX. In Fig. 3(d) we illustrate
the SGEP phase diagram of ΔXðχi; SiÞ. The phase diagram
is symmetric about the point (0,1), so, having ðχ1; S1Þ fixed,
ðχ2; S2Þ can be chosen in two ways. In order to classify the
stability of the resulting pattern it is enough to check to
which part of phase diagram in Fig. 3(d) each of the half-
motifs constituting the full network motif can be assigned.
SGEPs are formed only from the two potentially stable
half-motifs.
In Fig. 4 the stability regions of all possible half-motifs

are shown. For half-motifs with Ci > 0, stabilization is the
result of competition between interactions and the sponta-
neous behavior of domains. For ðþ;þ;þÞ and ð−;þ;þÞ
activation is counterbalanced by the spontaneous shrinking
or collapsing of domains (Si > 1 and Si < 0, respectively).
For these cases, the boundaries of initial domains must be
placed within λi’s range, so the stabilization precedes their

FIG. 3. (a) Map of jΔvj=jΔvmaxj over the ðχ1; χ2Þ plane. Δvmax
is Δv for ðχ1; χ2Þ ¼ ð0; 0Þ. Δv is the order parameter of transition
between IGEP and TGEP phase. Phase boundary coincides with
ΔX ¼ −∞ line (white, dashed). 3D representation of these data is
included in SM. (b),(c) The maps of v and ΔX over the ðχ1; χ2Þ
plane in TGEP phase. The line v ¼ 0 indicates SGEPs. (d) The
phase diagram of SGEP, in the ðχi; SiÞ space. Colored region
indicates where ΔX is defined. Stabilization requires that
ΔXðχ1; S1Þ ¼ ΔXðχ2; S2Þ.
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spontaneous decay. The half-motif ðþ;−;þÞ is less restric-
tive for initial conditions, as it involves a spontaneously
growing domain (0 < Si < 1). Combinations of ðþ;−;þÞ
with ð−;þ;þÞ are often encountered in biological systems,
such as spinal cord development [43], limb formation
[26,51–53], and segmentation in the Drosophila embryo
[46,47].
For half-motifs with Ci < 0 stabilization is the result of

competition between the default activation (Ci < 0) and
inhibiting interactions. There are no restrictions for
initial conditions, as genes with Ci < 0 are spontaneously
expressed in undifferentiated tissue.
Two half-motifs cannot be stabilized: ð−;−;þÞ and

ðþ;þ;−Þ. The former has no activating interactions, thus
it cannot sustain expression in the long run. Conversely,
the latter is activated by default and by both interactions,
thus it spreads in an unbounded manner. Interestingly, half-
motif ð−;−; CiÞ is found in many biological systems
[39,43,46,47], but our results show that it requires external
activation (Ci < 0) to ensure stability.
Finally, the stability of half-motifs with ϵii < 0 has an

additional limitation. In the two-gene system, the effective
threshold for activation reads C̃i ¼ Ci − ϵijψ j. Similar to
one-component systems, when C̃i < 0 and ϵiiψ̃ i < C̃i,
the production of the ith gene tends to C̃i=ϵii instead of
ψ̃ i. This causes the stability conditions to fail when Si <
2þ 2χi for ð−;þ;�Þ and when Si < 2 for ð−;−;−Þ.
We have shown that the quasinonlinear model provides

an in-depth insight into the problem of GEP stabilization. It
elucidates the single-gene dynamics and demonstrates that
the formation of biologically relevant GEPs (traveling or
genuinely stable) is governed by a phase transition. Further,
it provides stability conditions for two-gene network
motifs encountered in developmental GRNs. Our predic-
tions should hold for systems with additional genes and
interactions, as long as contact zones between domains are
separated by at least λi, which allows us to consider them

separately. The model also exhibits much potential for
further generalizations.
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