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Models of many-species ecosystems, such as the Lotka-Volterra and replicator equations, suggest that
these systems generically exhibit near-extinction processes, where population sizes go very close to zero
for some time before rebounding, accompanied by a slowdown of the dynamics (aging). Here, we
investigate the connection between near-extinction and aging by introducing an exactly solvable many-
variable model, where the time derivative of each population size vanishes at both zero and some finite
maximal size. We show that aging emerges generically when random interactions are taken between
populations. Population sizes remain exponentially close (in time) to the absorbing values for extended
periods of time, with rapid transitions between these two values. The mechanism for aging is different from
the one at play in usual glassy systems: At long times, the system evolves in the vicinity of unstable fixed
points rather than marginal ones.
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Interactions between species in ecosystems may lead to
large fluctuations in their population sizes. Theoretical
models play a central role in understanding these fluctua-
tions in nature and experiments, both for several species
[1–4] and for many species [5]. The dynamics of pop-
ulations that interact and reproduce are often modeled by
coupled ordinary differential equations for population sizes
fxig. They are non-negative variables, xi ≥ 0, and must
remain so throughout the dynamics. The boundary values
xiðtÞ ¼ 0 represent extinct populations: If a population is
extinct at some time t, it must remain so at all later times.
Namely, xi ¼ 0 is an absorbing value for xi. These require-
ments are satisfied by a broad class of differential equations
of the form [6]

_xi ¼ xigiðx⃗Þ: ð1Þ

Examples in this class include the Lotka-Volterra equations
for which giðx⃗Þ ¼ Bi −

P
j Aijxj, with the matrixA encod-

ing the interactions between populations; resource-
competition models [7]; and the replicator equations
employed in evolution and game theory [6].
It is well known that, depending on the shape of the

functions gi, few variable systems of the form (1) can
exhibit different long-time behaviors such as stationarity,
periodicity, or chaos [6]. Remarkably, the existence of
absorbing hyperplanes has also been shown to lead, in
some cases, to robust heteroclinic cycles [8,9]. A classical
example is the three-species Lotka-Volterra system with
rock-paper-scissors-type interactions [10], where each spe-
cies hinders the growth of the next. There, trajectories are
attracted to a cycle connecting three unstable fixed points,
each with a single surviving population; see Fig. 1(a). As
time increases, they pass ever closer to these fixed points,
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FIG. 1. Aging by passing near unstable fixed points. (a) Hetero-
clinic cycle in the three-variable May-Leonard model. The
dynamics slow down as the system goes ever closer to fixed
points (dots), despite them being unstable. (b) Dynamics of
example variables (out of S ¼ 2 × 104), in the Lotka-Volterra
system (solid line, plot of ln xi) and the mirrored-extinction
model (2) (dashed line, plot of ln½xi=ð1 − xiÞ�). This illustrates the
longer and deeper excursions near the absorbing values, xi ¼ 0

for Lotka-Volterra and xi ∈ f0; 1g for the mirrored-extinction
case. (c) In log time, the dynamics of any variable in Eq. (2)
eventually follow a biased time-translation-invariant two-state
process. (d) Mean autocorrelation function Cðt0 þ τ; t0Þ of xiðtÞ as
measured in a numerical simulation of Eq. (2) with 2 × 104

degrees of freedom as a function of τ=t0, showing a collapse for
different waiting times t0, and agreement with the analytical
master curve (dashed line). Inset: the same curves, as a function
of τ. Parameters for Lotka-Volterra simulations in (a) and (b) are
given in Ref. [12].
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resulting in slowdown of the dynamics, with exponentially
increasing sojourn times in their vicinity and rapid tran-
sitions between them [10,11].
In models characterized by a large number S of variables,

recent works find that an analogous slowdown emerges
generically for random interaction coefficients. It is known
that aging (a situation in which the system does not
asymptotically settle to a fixed point but keeps exploring
the phase space with a velocity that nevertheless decays
with the elapsed time) can occur in many-variable Lotka-
Volterra systems with random asymmetric interactions [13]
and replicator equations with nearly antisymmetric random
interactions [14]. Here, some populations experience ever-
longer periods near extinction (xi ≃ 0 and xi closer to zero
in successive near-extinction periods) before eventually
returning to xi ¼ Oð1Þ; see Fig. 1(b). Such dips and
“blooms” are documented in experiments and field data
(e.g., Refs. [15,16]) and are ecologically significant, as they
may lead to extinctions in actual finite populations. The
properties of these dynamics have remained elusive, how-
ever. The analogy with low-dimensional examples such as
in Fig. 1(a) is limited. For one, in the many-variable case,
the system does not approach a limit cycle (at least if the
limit S → ∞ is taken before t → ∞). Second, large
dynamical systems of the form (1) may possess many
fixed points with different properties (e.g., the fraction of
variables for which xi ¼ 0 or their instability index), and
linking the characteristics of fixed points to the dynamics
remains an open problem.
In this Letter, we propose a high-dimensional model of

the form (1) that provides insights into the connection
between aging and absorbing values, by bypassing some of
the difficulties inherent to the many-variable Lotka-Volterra
and replicator equations. Fixed points of Eq. (1) satisfy
either xi ¼ 0 or giðx⃗Þ ¼ 0 for every i. Since the unique
aging behavior of these systems is tied to the existence of
absorbing values (xi ¼ 0), we introduce a model with two
absorbing values for each variable, which we refer to as the
mirrored-extinction model. Specifically, we consider the
evolution of S degrees of freedom fxigi¼1;…;S, with 0 ≤
xi ≤ 1 for all i:

_xiðtÞ ¼ xiðtÞ½1 − xiðtÞ�
XS
j¼1

αijxjðtÞ; ð2Þ

where α is a zero-mean Gaussian random matrix with
independent and identically distributed entries (referred to
as asymmetric interactions). We take E½α2ij� ¼ 1=S, which
sets the units of time. From an ecological perspective, the
interactions in Eq. (2) affect the growth rates of populations
but not their maximal size, which might be limited by other
factors; see, for example, Refs. [17,18]. Equation (2) can be
extended by adding a species-dependent growth rate gi to
the sum:

P
j αijxj → gi þ

P
j αijxj (so that when a species

is alone it undergoes simple logistic growth with a growth
rate gi, similarly to the Lotka-Volterra equations) and is
solvable just as described below and with the same
qualitative outcomes [12].
The resulting dynamical system has many fixed points

where all degrees of freedom are at their absorbing values,
either xi ¼ 0 or xi ¼ 1, allowing us to focus on the effects
of these absorbing boundaries. It displays aging, similarly
to the Lotka-Volterra case, but with the xi spending ever-
longer times close to either xi ¼ 0 or 1 with rapid
transitions between these two values; see Fig. 1(b).
Importantly, the model in Eq. (2) is exactly solvable in
high dimension, allowing us to obtain detailed information
on the link between near-extinction processes and aging,
beyond other models that also exhibit both pheno-
mena [13,14].
The mechanism for aging found here is drastically

different from that at play in aging of usual spin glasses
following a quench, where the system’s energy is reduced
until it reaches an energy surface dominated by marginally
stable fixed points and spends its time there [19–21]. This
includes Lotka-Volterra dynamics with symmetric interac-
tion matrices αij [22,23], where g⃗ðx⃗Þ is the gradient of a
potential, thus permitting a mapping to a spin-glass phase.
This form of aging is known to disappear when asymmetry
is introduced to the interaction coefficients [24,25].
In contrast, here we show that aging happens in Eq. (2),

as variables are driven close to their absorbing values: The
probability PðxiÞ at long times concentrates about f0; 1g,
as shown below in Eq. (13). Near fixed points, the
dynamics slow down, as manifested in the autocorrelation
Cðt0 þ τ; t0Þ of xiðtÞ, which, as t0 grows, relaxes more
slowly with τ, as shown below in Eq. (9). Similarly to the
three-variable example in Fig. 1(a), typical systems go very
close to fixed points which are therefore long lived; see
Figs. 1(b) and 1(c). This happens despite these fixed points
being unstable, which we show by calculating the spectrum
[Eq. (17)] of the linearized dynamics around the fixed
points approached at long times. This provides a mecha-
nism for aging in the absence of an underlying energy
function. We find that, in the long-time limit, the system
moves between infinitely many unstable fixed points that
all have the same finite fraction of unstable directions and
the same stability spectrum. They are neither the most
stable nor the most abundant fixed points.
Dynamical mean field theory.— To analyze the many-

variable dynamics (2), we use dynamical mean field theory
(DMFT) [26,27]. In the limit S → ∞ and for xi sampled
independently at the initial time, the dynamics of a single
degree of freedom xðtÞ are exactly described by a stochastic
differential equation:

_xðtÞ ¼ xðtÞ½1 − xðtÞ�ξðtÞ; ð3Þ

with ξðtÞ a zero-mean Gaussian process. This stems from
the fact that the term ξiðtÞ≡P

j αijxjðtÞ appearing in
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Eq. (2) is the sum of many weakly correlated contributions.
As is usual in DMFT, this expression for ξiðtÞ yields a
self-consistent closure relation that reads Cðt; t0Þ≡
hξðtÞξðt0Þi ¼ hxðtÞxðt0Þi. Here, the angular brackets h:i
denote an average over the initial conditions xð0Þ and
realizations of the noise ξðtÞ. The derivation of Eq. (3)
follows a standard procedure [13,26–29] and is detailed in
Ref. [12]. To analyze the dynamics, it is, therefore, very
helpful to solve for the autocorrelation function Cðt; t0Þ.
To proceed, we introduce the transformation uðtÞ ¼

ln½xðtÞ=ð1 − xðtÞÞ� that sends the boundaries of the domain
[0, 1] to ð−∞;þ∞Þ and for which Eq. (3) becomes

_uðtÞ ¼ ξðtÞ; ð4Þ

with the closure relation

hξðtÞξðt0Þi ¼ hfðuðtÞÞfðuðt0ÞÞi; ð5Þ

where

fðyÞ≡ ey

1þ ey
:

Aging and the autocorrelation function.— We start by
showing that the mean-square displacement of uðtÞ is
ballistic. Denote the autocorrelation Gðt; t0Þ≡ huðtÞuðt0Þi,
which by Eq. (4) is related to Cðt; t0Þ by Cðt; t0Þ ¼
∂t∂t0Gðt; t0Þ. We take initial conditions such that uð0Þ ¼ 0
or, equivalently, xð0Þ ¼ 1=2; the long-time behavior of the
correlation function is insensitive to this choice. The closure
equation in Eq. (5) can then be written as

∂t∂t0Gðt; t0Þ ¼ hfðuðtÞÞfðuðt0ÞÞi: ð6Þ

uðtÞ and uðt0Þ are jointly Gaussian with zero means, from
which it follows that 1=16 ≤ hfðuðtÞÞfðuðt0ÞÞi ≤ 1; see
Ref. [12]. Therefore, tt0=16 < Gðt; t0Þ < tt0, so huðtÞ2i ¼
Gðt; tÞ ∼ t2, corresponding to ballistic growth of uðtÞ. We
show below that uðtÞ nonetheless repeatedly crosses the
origin at arbitrarily long times.
The long-time expression for Gðt; t0Þ can be worked out

from Eq. (6). Here, we present a different but equivalent
derivation, which makes explicit the aging properties of the
model. Motivated by the ballistic growth of uðtÞ, we
introduce zðtÞ≡ uðtÞ=t, and we rescale time though
s≡ lnðtÞ. The resulting dynamics read

z0ðsÞ ¼ −zðsÞ þ ξ̂ðsÞ; ð7Þ

together with the closure relation [from Eq. (5)]

hξ̂ðsÞξ̂ðs0Þi ¼ hfðeszðsÞÞfðes0zðs0ÞÞi:

Because zðsÞ is a Gaussian process with finite Oð1Þ
variance as s → ∞, in the long-time limit this equation
reads

hξ̂ðsÞξ̂ðs0Þi ¼ hΘðzðsÞÞΘðzðs0ÞÞi: ð8Þ

Equations (7) and (8) map the original many-body dynam-
ics of Eq. (2), in the long-time limit, to chaotic dynamics of
random neural networks of the form discussed in Ref. [30].
As in Ref. [30], at large s, we expect the process in Eq. (7)
to reach a time-translation-invariant chaotic state charac-
terized by

hξ̂ðsÞξ̂ðs0Þi≡ Ĉðs − s0Þ:

In the original timescale t ¼ es, this corresponds to
autocorrelation of the form

lim
t0→∞

Cðt0 þ τ; t0Þ ¼ Ĉðln ð1þ βÞÞ; ð9Þ

at fixed β≡ τ=t0.Cðt0 þ τ; t0Þ thus relaxes more slowly with
τ as t0 grows, a hallmark of aging, here with correlation
time growing linearly with the elapsed time. Accordingly,
from Eq. (7), the zðsÞ autocorrelation function also admits a
time-translation-invariant form at large times:

hzðsÞzðs0Þi≡ Δ̂ðs − s0Þ;

which is related to Gðt; t0Þ through limt0→∞Gðt0 þ τ; t0Þ=
t0ðt0 þ τÞ ¼ Δ̂ðln ð1þ βÞÞ. We now sketch the derivation of
Δ̂. Following Ref. [30], Δ̂ and Ĉ are related by ĈðsÞ ¼
−Δ̂00ðsÞ þ Δ̂ðsÞ, which, together with Eq. (8), implies that
Δ̂ðsÞ satisfies an equation for the motion of a classical
particle in a potential V:

Δ̂00ðsÞ ¼ −V 0ðΔ̂;Δ0Þ; ð10Þ

where the potential depends parametrically on the initial
condition Δ0 ≡ Δ̂ð0Þ and reads

V ≡ −
Δ̂2

2
þ Δ̂

4
þ Δ̂
2π

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0

Δ̂2
− 1

s
þ arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0

Δ̂2
− 1

s 1
CA:

The condition Δ̂ðsÞ ¼ Δ̂ð−sÞ implies Δ̂0ð0Þ ¼ 0 so that the
Δ̂ðsÞ trajectory has zero initial kinetic energy. The only
physically relevant trajectory is, therefore, the one con-
verging to the unstable fixed point Δ� with the same
potential energy as the initial condition and related toΔ0 by
V 0ðΔ�;Δ0Þ ¼ 0 and VðΔ�;Δ0Þ ¼ VðΔ0;Δ0Þ. This gives
Δ0 ≃ 0.476 and Δ� ≃ 0.427.
The correlation Cðt0 þ τ; t0Þ ¼ ð1=SÞPi xiðt0 þ τÞxiðt0Þ,

obtained by running the dynamics (2), is thus expected by
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Eq. (9) to collapse when plotted against τ=t0, as indeed seen
in Fig. 1(d), and it matches the correlation function ĈðsÞ
obtained by numerically solving Eq. (10) with the appro-
priate initial conditions. Note that Δ0 is linked to the long-
time growth of huðtÞ2i, asGðt; tÞ=t2→t→∞Δ0. Additionally,
the autocorrelation satisfies

lim
t0→∞

Cðt0; t0Þ ¼ 1

2
> lim

τ→∞
lim
t0→∞

Cðt0 þ τ; t0Þ ¼ Δ�; ð11Þ

so that the system continues to evolve, as the correlation
with the state at any time is later partially lost.
Equation (10) implies a power law relaxation of Cðt; t0Þ
in the aging regime to its plateau value Δ�:

lim
t0→∞

Cðt0ð1þ βÞ; t0Þ − Δ� ∼
β→∞

β−k;

with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV 00ðΔ�;Δ0Þj
p

≃ 0.492.
Single-variable dynamics.— The dynamics (2) pass very

close to fixed points at long times. To see this, we calculate
the probability distribution of x at time t, PtðxÞ, taken over
many variables in Eq. (2) or, equivalently, over different
realizations of Eq. (3). Using the fact that uðtÞ is Gaussian
and that xðtÞ ¼ fðuðtÞÞ, it reads

PtðxÞ ¼
½xð1 − xÞ�−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πGðt; tÞp exp

�
−

1

2Gðt; tÞ
�
ln

x
1 − x

�
2
�
: ð12Þ

In particular, this implies

lim
t→∞

PtðxÞ ¼
1

2
½δðxÞ þ δðx − 1Þ�: ð13Þ

This shows that the system (2) asymptotically approaches
fixed points of the dynamics, where all xi ∈ f0; 1g.
Furthermore, at large but finite times, the probability to
find xðtÞ away from the boundaries of [0, 1] decays as 1=t,
with Eq. (12) giving

Prob½xðtÞ ∈ ½ϵ; 1 − ϵ�� ∼
t→∞

1

t

ffiffiffiffiffiffiffiffi
2

πΔ0

s
ln

�
1 − ϵ

ϵ

�
ð14Þ

for any fixed ϵ ∈ ½0; 1=2�. The probability is, thus, con-
centrated exponentially close in time to 0 and 1. Yet the
system continues to evolve [see Eq. (11)], so that none of
these fixed points are stable: At long times, the system
transitions between unstable fixed points, spending
ever-longer times in their vicinity with fast transitions
between them.
In the long-time limit, since xðsÞ ¼ ΘðzðsÞÞ for s → ∞,

xðsÞ asymptotically approaches a time-translation-invariant
two-state process. This is illustrated in Fig. 1(c). Note that,
as Δ� > 0 in Eq. (11), Eq. (13) is not the ergodic measure
(in log time) of a single variable xiðtÞ. In Ref. [12], we show

that for a given degree of freedom the log-time ergodic
measure is given by

Pξ̄ðxÞ ¼ ð1 − pÞδðxÞ þ pδðx − 1Þ; ð15Þ

with p ¼ ½1þ Erfðξ̄= ffiffiffiffiffi
2χ

p Þ�=2, where ξ̄ is a zero-mean
Gaussian random variable with variance hξ̄2i ¼ Δ� and
χ ¼ R

∞
0 dse−s½ĈðsÞ − Δ��. So, in a given realization of

Eq. (2), each variable has an “identity” expressed in the
fraction of time (in log time) it spends near 0 and 1.
Stability of visited fixed points.—We found above that at

long times the system approaches fixed points but even-
tually leaves their vicinity, signaling that they are unstable.
We now calculate their entire stability spectrum. The
linearized dynamics close to a fixed point x� are _δxi ¼
Jijδxi with a diagonal matrix Jij ¼ δijλ

�
i . The growth rates

λ�i , positive when growing in the direction away from the
boundaries, are given by

λ�i ¼ ð1 − 2x�i Þ
�X

j

αijx�j

�
: ð16Þ

The stability spectrum of the visited fixed points is there-
fore equal, at long times, to the empirical distribution in the
many-variable dynamics (2) of λiðtÞ≡ ½1 − 2xiðtÞ�ξiðtÞ for
i ¼ 1…S. In the S → ∞ limit, the stability spectrum is thus
equal to the distribution of λðtÞ ¼ ½1 − 2xðtÞ�ξðtÞ in the
DMFT framework. It can also be shown that the λiðtÞ are
independent and identically distributed random variables
[12]; therefore, the spectrum is self-averaging.
The joint distribution of ξðtÞ and uðtÞ is Gaussian, with

correlations huðtÞ2i ¼ Gðt; tÞ, hξðtÞ2i ¼ Cðt; tÞ, and cross-
correlation huðtÞξðtÞi. Changing variables from ðu; ξÞ to
ðu; λÞ and integrating over u, we obtain an expression for
the distribution of λðtÞ, reproduced in Ref. [12]. Taking its
long-time limit, we find that the dynamics (2) transition
between fixed points which all have the same stability
spectrum:

ρðλÞ ¼ 1ffiffiffi
π

p e−λ
2

Erfc

�
λ

κ∞

�
; ð17Þ

with κ∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2Δ0Þ − 1

p
≃ 0.224; see Fig. 2. This dis-

tribution has a finite fraction of unstable directions, given
by

Z
∞

0

ρðλÞdλ ¼ arctanðκ∞Þ
π

≃ 0.141:

Thus, the system approaches unstable fixed points. This can
be compared with the statistics of the full distribution of
fixed points of Eq. (2) with all xi ∈ f0; 1g. There are 2S of
them, and the average number of those with αS unstable
directions is given by the binomial law hN αi ∼ exp ðSgðαÞÞ,
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with gðαÞ ¼ −α lnα − ð1 − αÞ lnð1 − αÞ. Therefore, in typ-
ical fixed points, half of the directions are unstable:
α ¼ 1=2. The dynamics, therefore, selects in the long-time
limit fixed points that are exponentially rare (compared to
the typical ones) but that are not the most stable ones
existing in the phase space, which are marginal (α ¼ 0).
In conclusion, we propose an exactly solvable many-

variable model for the dynamics of interacting populations
with absorbing boundary values. Its dynamics slow down
with a correlation time that grows as the age of the system;
see Eq. (9). The system evolves in the vicinity of fixed
points: In the long-time limit, all variables are found
exponentially close in time to absorbing values; see
Eq. (14). The time it takes for a variable to leave the
vicinity of one absorbing value to visit the vicinity of the
other is, therefore, proportional to the age of the system.
This explains the scaling of the aging [Eq. (9)]. All these
fixed points are unstable, as shown in Eq. (17), in contrast
with marginal fixed points reached in usual glassy dynam-
ics [19–21]. In the future, it would be interesting to
understand how this scenario is adapted to other many-
variable interacting population dynamics, such as the
Lotka-Volterra model, where fixed points have degrees
of freedom that are not at absorbing values. Fingerprints of
these phenomena might be observed, as an increase in
correlation time combined with population blooms, in
experiments that follow interacting species starting from
similar population sizes.
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