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Classical Nucleation Theory (CNT), linking rare nucleation events to the free-energy landscape of a
growing nucleus, is central to understanding phase-change kinetics in passive fluids. Nucleation in
nonequilibrium systems is much harder to describe because there is no free energy, but instead a dynamics-
dependent quasipotential that typically must be found numerically. Here we extend CNT to a class of active
phase-separating systems governed by a minimal field-theoretic model (Active Model Bþ). In the small
noise and supersaturation limits that CNT assumes, we compute analytically the quasipotential, and hence,
nucleation barrier, for liquid-vapor phase separation. Crucial to our results, detailed balance, although
broken microscopically by activity, is restored along the instanton trajectory, which in CNT involves the
nuclear radius as the sole reaction coordinate.
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Active fluids dissipate energy at the microscale: Each
constituent particle extracts energy from the environment
and uses it to overcome frictional or viscous drag and
create motion [1,2]. Phase separation is ubiquitous in
active systems: As in equilibrium, it can stem from
attractive forces [3,4], such as adhesion which underlies
compartmentalization in biological tissues [5–7]. Phase
separation can also emerge for purely repulsive motile
particles [8–10], a situation with no equilibrium counter-
part. Recently, it was shown that active phase separation
can display nonequilibrium features at the macroscopic
scale, such as negative surface tensions [11–13], meso-
scopic currents in the steady state [12,14–16], or highly
dynamical clustering [17–19]. Below, we address the
simplest case where the active system undergoes bulk
fluid-fluid phase separation. Although at first sight this
resembles closely the equilibrium case [8,20–25], detailed
balance remains broken mesoscopically in the presence of
density gradients [25,26]. In phase-field-type models, the
resulting interfacial activity alters the binodal densities at
coexistence [27,28]. It must likewise be accounted for to
properly define the pressure in particle-based models [29].
A crucial feature of phase-separating systems is homo-

geneous nucleation, a rare event causing the formation of a
distinct phase by growth of a nucleus within the bulk of a
metastable parent phase. This growth is driven by noise
until a critical radius is reached, whereafter it proceeds
spontaneously. In passive fluids, Classical Nucleation
Theory (CNT) [30,31] states that the probability of
nucleating a liquid droplet in a vapor with supersaturation

ϵ is given, within the large deviations limit of low temper-

ature T, by P ≍ exp ½−UeqðRcÞ=kBT�. Here, ≍ stands for
logarithmic equivalence [32] and kB is the Boltzmann
constant. In three spatial dimensions, the free-energy
barrier is given by

UeqðRcÞ ¼
4π

3
σeqR2

c;eq þOðRc; TÞ; d ¼ 3 ð1Þ

in terms of the critical radius is Rc;eq ¼ 2σeq=
½f0ðϕsÞΔϕ − Δf�, and σeq is the surface tension of the
interface. Here, Δϕ ¼ ϕ2 − ϕ1 and Δf ¼ fðϕ2Þ − fðϕ1Þ
where ϕ is the order parameter (e.g., particle density),
fðϕÞ is the corresponding free-energy density, ϕ1;2 re-
present, respectively, the vapor and liquid binodals,
and ϕs ¼ ϕ1 þ ϵ. CNT holds for small supersaturation
(ϵ ≪ jϕ1j) such that the critical nucleation radius Rc is
large compared to the interfacial width. It assumes that the
nucleus remains almost spherical, which is true for fluid-
fluid phase separation in the regime just delineated.
CNT equally describes nucleation of vapor from liquid by
interchanging 1 ↔ 2. The vast literature on CNT has inter
alia aimed to test it experimentally and numerically [31,33],
improve its predictions beyond the limit of small supersatu-
ration [34], describe systems where multiple pathways to
nucleation are present [35], and assess the relative impor-
tance of homogeneous and heterogeneous nucleation [36].
It has been suggested that CNT might be extended

to address nucleation in phase-separating active systems
[37–39], but there has been limited progress along these
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lines so far. We are aware of one study, restricted to hard-
core non-Brownian particles, which assumes a nucleation
pathway via single-monomer attachments, and requires
fitting parameters to get quantitative agreement with
simulations [38]. Below, we address instead CNT via
statistical field theory. Here we will find that the standard
analysis for passive systems can be extended with surpris-
ing completeness to the active case.
Classical Nucleation Theory is one prominent instance

of large deviation theory (LDT) [32,40], which addresses
rare events in settings ranging from solid state physics [41]
and physical chemistry [42] to finance [43], turbulence
[44,45], and geophysical flows [46,47]. In thermal equi-
librium systems, event rates can be found from the free-
energy barrier, e.g., via Eq. (1) above (although dynamical
methods can also be used [48]). By working with the free
energy, one also accesses the typical dynamics of the rare
event: Time-reversal symmetry ensures that the most
probable route up the barrier (the so-called instanton path)
is the time reversal of the noiseless (relaxational) down-
ward path [49,50].
The situation is very different in nonequilibrium systems

such as active matter. Within LDT [32,40], the free energy
is replaced by the quasipotential [49,50], but this is
unknown a priori, and the instanton is not in general the
time reversal of the relaxational path. Computing the
quasipotential and/or instanton represents an intrinsically
dynamical problem which, even in the small noise limit
of LDT, is rarely achievable analytically. (Only for a few
minimal models was the quasipotential found either
exactly [51–53] or by perturbation theory [54–56].) Even
from a numerical perspective, studying rare events without
detailed balance is much more complex than at equilibrium;
dedicated algorithms developed for this task [57] include
cloning [58,59], instanton-based codes [60–62], and
other approaches [63–67]. Accordingly, while intense
research into rare events in active systems was recently
initiated [66–72], this has been mainly numerical.
In this Letter, we extend CNT to active fluid phase

separation, using statistical field theory. We can thereby
access analytically nucleation rates and quasipotentials for
a generic class of nonequilibrium, many-body systems.
This is possible because, although activity breaks detailed
balance, this is restored along the instanton trajectory, which
in CNT involves a single reaction coordinate (the droplet
radius) with noise that we infer from the infinite-
dimensional Langevin equation for the order parameter
field. Our results are given for Active Model Bþ
(AMBþ) [12,25], a canonical field theory for active phase
separation. However, the analysis route just outlined should
be open whenever CNT’s precept of a single reaction
coordinate is applicable.
In their simplest form [12,27,73], statistical field theories

of active phase separation only retain the evolution of a
composition or density field, ϕ. (Hydrodynamic [16,74] or

polar [75] fields can be added if required.) Their con-
struction proceeds via conservation laws, symmetry argu-
ments, and an expansion in ϕ and its gradients, along
lines long established for Model B, which describes passive
phase separation [76–78]. In the active case, locally
broken time-reversal symmetry implies that new nonlinear
terms are allowed. The ensuing minimal theory, AMBþ,
includes all terms that break detailed balance up to order
Oð∇4;ϕ2Þ [12,25]:

∂tϕ ¼ −∇ · ðJþ
ffiffiffiffiffiffiffi
2D

p
ΛÞ; ð2Þ

J=M ¼ −∇μλ þ ζð∇2ϕÞ∇ϕ; ð3Þ

μλ½ϕ� ¼
δF
δϕ

þ λj∇ϕj2: ð4Þ

Here, F ¼ R
drffðϕÞ þ ½KðϕÞ=2�j∇ϕj2g, with fðϕÞ a

double-well local free-energy density, and Λ is a vector
of zero-mean, unit-variance, Gaussian white noises. Below,
we choose unit mobility (M ¼ 1), set K constant [though
our results can be extended to any KðϕÞ > 0], assume
constant noiseD, and choose fðϕÞ as a quartic polynomial.
These are standard simplifications for passive Model B,
which is recovered, setting D ¼ MkBT, at vanishing
activity (λ ¼ ζ ¼ 0) [76], and leads to Eq. (1). As shown
in Refs. [12,28], the explicit coarse-graining of quorum-
sensing particle models leads ζ ¼ 0, while nonvanishing ζ
and λ are obtained when two-body forces are included
[12,79]. Note that the ζ term in Eq. (3) can be written via
Helmholtz decomposition as −∇μζ þ∇ ∧ A, whose sec-
ond, divergenceless part does not affect the ϕ dynamics in
Eq. (2). Thus, we define a total chemical potential
μ ¼ μλ þ μζ, with μζ nonlocal in ϕ [80].
Let us denote by ϕ1;2 the binodal densities at which bulk

vapor and liquid phases coexist. Within LDT, these can be
calculated at mean field (D → 0) level; without activity,
this amounts to global minimization of F . For AMBþ they
are instead found by changing variables from ϕ and
f to ψ and g: These solve K∂

2ψ=∂ϕ2 ¼ ðζ − 2λÞ∂ψ=∂ϕ
and ∂g=∂ψ ¼ ∂f=∂ϕ, where in uniform bulk phases
∂f=∂ϕ ¼ μ as defined previously. It follows that ψ ¼
K( exp½ðζ − 2λÞϕ=K� − 1)=ðζ − 2λÞ [12,28]. In trans-
formed variables, the binodal densities ϕ1;2 obey the usual
equilibrium conditions: μ1¼μ2 and ðμψ −gÞ1¼ðμψ −gÞ2
[12,28]. This change of variables vastly simplifies the
mathematical construction of phase equilibria, but we show
in Ref. [80] how our main results can be found without
them.
We now consider, as in Fig. 1, the nucleation of a liquid

droplet of mean radius Rt in a supersaturated vapor with
density at infinity ϕs ¼ ϕ1 þ ϵ (vapor-in-liquid nucleation
can of course be addressed likewise). We detail our analysis
in d ¼ 3, but our main results are valid in dimensions
d ≥ 2; the case d ¼ 2 involves boundary terms and we treat
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it separately below. Following CNT, we assume small
supersaturation, ϵ; the chemical potential at infinity
remains constant and equal to f0ðϕsÞ. The central idea is
that, as in passive fluids [48,81], the most probable
nucleation path is explored by quasistatic diffusion in
the low noise limit. The locally coexisting densities outside
and inside a near-spherical droplet (at distance from the
interface large compared to its width ξ but small compared
to the droplet size) are denoted by ϕ�. We parametrize the
droplet by its radius Rðθ1; θ2; tÞ ¼ Rt þ δRðθ1; θ2; tÞ as a
function of the polar and azimuthal angles, where δR
encodes shape fluctuations at fixed volume such thatR
dθ1dθ2 sin θ1δR ¼ 0.
In principle, three separate sources of fluctuations could

contribute to the nucleation dynamics: (i) fluctuations in
mean droplet radius Rt, (ii) nonspherical fluctuations of its
shape encoded in δR, and (iii) fluctuations in the density
profile φRt

ðr − RÞ normal to the interface. However, under
CNT’s assumption of large Rt and small noise amplitude,
only fluctuations in the droplet radius are relevant for
nucleation, just as in the passive case. To confirm this for
active systems, we note first that shape fluctuations are
driven only by noise—nothing else in Eq. (2) breaks
rotational symmetry. As shown in Ref. [11], these fluctua-
tions are resisted by a capillary-wave interfacial tension
σcw ¼ R

dyφ0ðyÞfKψ 0ðyÞ − ζ½ψðyÞ − ðψ1 þ ψ2Þ=2�φ0ðyÞg.
Hence, δR ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=σCW
p Þ and, as confirmed below, this is

negligible for nucleation dynamics at small D. Second,
fluctuations in the normal profile relax on a diffusive
timescale set by the interfacial thickness and hence decay
fast compared to the diffusive growth or shrinkage of the
droplet itself. This can be formalized in the ansatz
ϕðx; tÞ ¼ φRt

(r − Rðθ1; θ2; tÞ),

φRt
ðr − RÞ ¼ φðr − RÞ þ φ1ðr − RÞ

Rt
þOðR−2

t Þ; ð5Þ

where φ is the stationary density profile of a flat interface
and φ1 a correction due to curvature.
We can now derive the stochastic evolution equation for

the mean droplet radius Rt. We start by inserting Eq. (5) in
Eq. (2). Working within the Stratonovich convention,
integrating over the angular coordinates, and retaining only
the leading orders in R−1

t and δR, the left-hand side gives
−φ0

Rt
ðr − RtÞ _Rt þOðR−2

t ; δR2Þ, where φ0
Rt
ðrÞ≡ ∂rφRt

ðrÞ.
Denoting by μRt

ðrÞ ¼ μ½φRt
ðr − RtÞ�, the chemical poten-

tial evaluated at r for the profile φRt
ðr − RtÞ, we thus obtain

−φ0
Rt
ðr − RtÞ _Rt ¼ ∇2μRt

þ χ þOðR−2
t ; δR2Þ; ð6Þ

where the Gaussian white noise χ has zero mean and
variance hχðr1; t1Þχðr2; t2Þi ¼ −2D∇2(δðr1 − r2Þ=rd−11 )
δðt1 − t2Þ=Sd, with Sd ¼ 4π in d ¼ 3. In deriving the
noise term, we have transformed the Dirac delta from
Cartesian to spherical coordinates using δðx − x0Þdx ¼
δðr − r0Þδðθ1 − θ01Þ0δðθ2 − θ02Þ=ðr2 sin θ1Þdx.
We next invert the Laplacian in Eq. (6). Imposing as

boundary conditions that μ ¼ f0ðϕsÞ at r → ∞, and that the
solution is nonsingular at r → 0, we get

∇−2½φ0
Rt
_Rt þ χ� ¼ f0ðϕsÞ − μRt

þOðR−2
t ; δR2Þ: ð7Þ

Here,∇−2s denotes the solutionlðrÞ to the Poisson equation
∇2lðrÞ ¼ sðrÞ defined for all r ∈ ½0;∞Þ and vanishing at
infinity, which explicitly reads lðrÞ ¼ −

R
∞
r dr2

R r2
0 dr1

ðr1=r2Þd−1sðr1Þ.
The effective evolution for the radius of the droplet Rt

can be found multiplying Eq. (7) by ψ 0
Rt
, where ψRt

is the
transformed variable associated with φRt

, and integrating
across the interface. The right side of Eq. (7) gives

ðd − 1Þσ
�
1

Rt
−

1

Rc

�
þOðR−2

t ; δR2Þ; ð8Þ

where the critical radius Rc is given by

Rc ¼
ðd − 1Þσ

f0ðϕsÞδψ − δg
; ð9Þ

with δψ ¼ ψðϕþÞ − ψðϕsÞ, δg ¼ gðϕþÞ − gðϕsÞ. Here,
σ ¼ R

drφ0ðrÞfKψ 0ðrÞ − ζ½ψðrÞ − ψðϕ2Þ�φ0ðrÞg is a sur-
face tension. Unlike in passive systems, this differs from
σCW; it is the tension previously encountered in our studies
of Ostwald ripening of liquid droplets [12], and can take
either sign. Here we restrict to σ > 0, but comment later on
the case of negative σ.
Under the same procedure of multiplying by ψ 0

Rt
and

integrating, then using the solution to the Poisson equation
and expanding in powers of R−1

t , the deterministic term on
the left side of Eq. (7) gives [80]

FIG. 1. A nucleating liquid (orange) droplet in a vapor (blue)
environment, showing the notation used in the text.
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_Rt

Z
drψ 0

Rt
∇−2φ0

Rt
¼ −Rt

_Rt½δϕδψ þOðR−1
t Þ�; ð10Þ

where δϕ ¼ ϕþ − ϕs. Likewise, the noise term in Eq. (7)
gives a Gaussian noise whose correlations we compute
in Ref. [80].
Putting together these results, we obtain the stochastic

dynamics for the radius of the droplet:

_Rt ¼ −MðRtÞ
∂U
∂Rt

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DM

p
ΛþOðR−3

t ; δR2Þ: ð11Þ

Here, Λ is a zero-mean Gaussian noise with correlations
hΛðt1ÞΛðt2Þi ¼ δðt1 − t2Þ; the effective mobility is

MðRtÞ ¼
1

SdðδϕÞ2Rd
t
þO

�
1

Rdþ1
t

�
; ð12Þ

and the effective potential is

UðRtÞ ¼ σ
ðϕþ − ϕsÞSd

ψðϕþÞ − ψðϕsÞ
Rd−1
t

�
1 −

d − 1

d
Rt

Rc

�
: ð13Þ

Equation (11), including crucially its noise, is the same as
for a thermal Langevin particle of mobility MðRtÞ and
temperatureD in a potentialUðRtÞ. Detailed balance is thus
restored for the dynamics of Rt even though it is absent in
that of ϕðx; tÞ. Indeed, Eq. (11) is the same equation as for
the reaction coordinate Rt in passive CNT for Model B, up
to a change in free-energy landscape U.
While we have derived the above results in d ¼ 3, they

hold for any d > 2. For d ¼ 2, boundary terms arise via the
inverse Laplacian, and while Eqs. (9), (11), and (13) still
hold, Eq. (12) is changed to

MðRtÞ ¼
1

SdðδϕÞ2R2
t logðRþ=RtÞ

þO
�

1

R3
t

�
; ð14Þ

where Rþ is the upper limit of integration for r. For a single
droplet nucleating in a circular domain of radius L, with
ϕ ¼ ϕs at the boundary, one chooses Rþ ¼ L. On the other
hand, for a nucleation event taking place among other
droplets already undergoing coarsening, Rþ must be self-
consistently determined from the distribution nðR; tÞ of
droplets of radius R at time t. Just as in the passive case, this
yields ðRþÞ−1 ¼ 2π

R
dRRnðR; tÞK1ðR=RþÞ=K0ðR=RþÞ,

where K0;1 are modified Bessel functions of the first kind
]82,83 ].

Equations (11)–(14) are the key results of this Letter. Just
as for passive CNT, they are valid in the limit of large Rt,
small noise and small supersaturation, in which Rc is also
large. Using the fact that ϕ� ¼ ϕ1;2 þOðR−1

t Þ [12],
one can then replace δϕ, δψ , and δg with Δϕ, Δψ ,
and Δg [80], and the critical radius reduces to Rc ¼ ðd −
1Þσ=½f0ðϕsÞΔψ − ΔgÞ þOðϵ0; 1=ðϵRtÞ� or, equivalently, to

Rc ¼ ðd − 1Þσ=½ϵΔψf00ðϕ1Þ� þO(ϵ0; 1=ðϵRtÞ). Moreover,
although Eq. (11) contains multiplicative noise, it is
equivalent in the Ito and Stratonovich interpretations, as
the conversion factor enters only at order OðR−d−1

t Þ.
As usual in CNT, a droplet successfully nucleates upon

reaching the critical radius Rc. The probability (or rate) for
this to happen is given at large deviation level by
PðRcÞ ≍ exp½−UðRcÞ=D�, with

UðRcÞ ¼
σSd
d

Δϕ
Δψ

Rd−1
c þOðRd−2

c ; DÞ; ð15Þ

the quasipotential for the critical droplet. Here we have
used that δR ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=σCW
p Þ. Just as it should, Eq. (15)

reduces to Eq. (1) for passive Model B: Without activity,
ψ → ϕ, σ → σeq, and Rc → Rc;eq. Furthermore, it should be
noted that the nucleation barrier in Eq. (15) takes exactly
the same form as in equilibrium upon the exchange of σeq,
Rc;eq with σΔϕ=Δψ and Rc. The growth of a droplet from
Rc to its final radius is relaxational: Therefore, the prob-
ability of observing a droplet of radius R is given by
PðRÞ ≍ exp½−ŪðRÞ=D�, where ŪðRÞ ¼ UðRÞ if R < Rc

and ŪðRÞ ¼ UðRcÞ if R ≥ Rc.
In order to explicitly compute ŪðRÞ and/or integrate the

instanton dynamics (11), we need to evaluate the surface
tension σ and the binodals. As shown in Refs. [12,80], these
quantities can be obtained via a simple numerical pro-
cedure, with σ found by a single numerical integral.
Moreover, when ζ ¼ 2λ, and the local free energy is of
standard form fðϕÞ ¼ −aϕ2=2þ bϕ4=4, the quasipotential
ŪðRÞ can be found analytically. From Eq. (15), we indeed
have that ψ ¼ ϕ, Δϕ ¼ 2

ffiffiffiffiffiffiffiffi
a=b

p
, and σ ¼ σeqð1þ ζ=KÞ,

where σeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Ka3=ð9b2Þ

p
. Note that any cubic term

cϕ3=3 in fðϕÞ can be absorbed by the shift
a → aþ c2=ð3bÞ, ϕ → ϕþ c=3b. In Fig. 2, we plot
UðRcÞ and the quasipotential ŪðRÞ at fixed supersaturation
for various ζ and λ. Unsurprisingly, the nucleation barrier is
very strongly changed by activity: Not only can it collapse
to zero as σ approaches negative values, but it can also be
much enhanced (for positive ζ). Since the barrier enters
nucleation rates exponentially, our ability to compute it
within CNT is a crucial step in quantitatively understanding
active phase-separation kinetics.
The theory derived in this Letter, describes nucleation in

AMBþ so long as the active surface tension σ and the
capillary-wave tension σCW are positive. Sufficiently high
activity can cause capillary waves to become unstable:
σCW < 0 is indeed found at λ, ζ sufficiently large and
positive [11], not shown in Fig. 2. Also, sufficiently strong
activity can turn the Ostwald process into reverse, while
σCW > 0: σ < 0 is indeed found at ζ, λ sufficiently negative
for liquid droplets (or positive for vapor bubbles) [12].
When this happens, RcðϵÞ is a stable fixed point for the
relaxational dynamics: A droplet grows (shrinks) if it is
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initially smaller (larger) than Rc. In this case, the critical
radius for nucleation is not Rc but expected to be much
smaller. Such a nucleation might perhaps be captured by
including the terms of order R−3

t in Eq. (11); we leave this
idea to future work.
In conclusion, we extended Classical Nucleation Theory

to address phase separation in active fluids. It is very
unusual, if not unique, for the probability of rare fluctua-
tions to be obtained analytically in a strongly nonequili-
brium system, with continuously many degrees of freedom,
as done here. This was achieved because detailed balance,
although violated in the full dynamics, was restored at large
deviation level for the reaction coordinate, as shown by
explicit construction of the Langevin equation for droplet
size (11). A key element to this was to compute the noise
in this equation, which we found to be unaffected by the
active terms although these drastically alter the (quasi)
potential landscape.
Our results were derived within AMBþ, a canonical

field theory for phase separation in active fluids. More
generally, the techniques developed here could help elu-
cidate the nucleation dynamics in more specific active
models by addressing field theories obtained by explicit
coarse-graining [12,28,84]. Our techniques might also help
in understanding nucleation in the presence of nonequili-
brium chemical reactions [85], relevant for describing the
inner structure of cells [86,87] or when the density
evolution is coupled to other slow fields [16,74,75].
More speculatively, our results might be a step toward
understanding nucleation, considered a key ingredient of
cancer metastasis [88], in biological tissues.
Confirming numerically, our analytical results pose a

significant challenge; this is because CNT is valid in the
regime where the nucleation barrier is much larger than the
noise amplitude [UðRcÞ ≫ D] and the supersaturation is

small, so that the nucleation rate is also very small and the
critical radius is large. Even for passive fluids, where CNT
has been widely verified both experimentally and in particle
models [31,33], we are not aware of any computational work
on Model B that addressed nucleation in the CNT regime.
Such a challenge can likely be addressed by employing
recently developed algorithms dedicated to sample
rare events in systems far from equilibrium [63–67,89];
in fact, our exact results create a potential benchmark for
these codes. A key question is whether algorithms can be
created to automatically identify a low-dimensional sub-
space of one or more reaction coordinates, without relying
on detailedmechanistic analysis of the type presented above.
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