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Despite the huge number of neurons composing a brain network, ongoing activity of local cell
assemblies is intrinsically stochastic. Fluctuations in their instantaneous rate of spike firing νðtÞ scale with
the size of the assembly and persist in isolated networks, i.e., in the absence of external sources of noise.
Although deterministic chaos due to the quenched disorder of the synaptic couplings underlies this
seemingly stochastic dynamics, an effective theory for the network dynamics of a finite assembly of spiking
neurons is lacking. Here, we fill this gap by extending the so-called population density approach including
an activity- and size-dependent stochastic source in the Fokker-Planck equation for the membrane potential
density. The finite-size noise embedded in this stochastic partial derivative equation is analytically
characterized leading to a self-consistent and nonperturbative description of νðtÞ valid for a wide class of
spiking neuron networks. Power spectra of νðtÞ are found in excellent agreement with those from detailed
simulations both in the linear regime and across a synchronization phase transition, when a size-dependent
smearing of the critical dynamics emerges.
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Complex systems in statistical physics usually deal with
a huge number N of interacting bodies like molecules
leading to having wide applicability of effective mean-field
theories. However, the finite size (e.g., volume) of the
system can have a significant impact in the emergent
collective dynamics [1]. This can be due to the fact that
finite systems have surfaces and volumes affecting the
system behavior when, for instance, phase transitions are
approached [2,3]. In many cases the presence of a finite
number of elements can be incorporated as a stochastic
field whose fluctuation size depends on N [4,5]. In this
way, the continuum formalism valid in the thermodynamic
limit may result in being effective in describing small-scale
phenomena across phase transitions [6]. Biological and
ecological systems can be even more challenging as they
may incorporate peculiar boundary conditions and hetero-
geneity in space and time posing them continuously outside
equilibrium [7,8]. This is the case of biological networks of
neurons. Here the probability current (see below) does not
vanish even under stationary conditions when it matches
the frequency of spikes emitted per neuron, i.e., the firing
rate ν [9–12]. In this Letter, we will show that finite-size
fluctuations can be effectively taken into account in this
challenging system. This is done via a self-consistent
definition of the noise to be embedded into the mean-field
population dynamics.
Population density and mean-field approximation.—In

the thermodynamic limit (N → ∞) networks of single-
compartment spiking neurons have collective dynamics

statistically described by the probability density pðv; tÞ of
realizations with membrane potential v at time t [10–13],
obeying the Fokker-Planck equation

∂tpðv; tÞ ¼ −∂vSpðv; tÞ þ δðv − vresÞνðtÞ: ð1Þ

In this continuity equation the density p changes accord-
ing to the divergence of the probability current Sp ¼
ðF þ μÞp − 1

2
∂vðσ2pÞ and to the source of realizations

reentering in the reset potential vres after emitting a spike
by crossing the emission threshold vthr. This flux of
neurons is the firing rate νðtÞ ¼ Spðvthr; tÞ. Here, the
membrane potential VðtÞ of a single neuron follows the
Langevin equation

dV ¼ ½FðVÞ þ μðV; tÞ�dtþ σðV; tÞdW; ð2Þ

where FðVÞ is the drifting current determining the model-
specific relaxation dynamics. In what follows, we adopt the
“leaky” integrate-and-fire (LIF) neuron with FðVÞ ¼ −V=τ
and decay time τ as the workbench [14]. The total synaptic
and ionotropic input current is a Gaussian white noise
dWðtÞ with zero mean and hdWðtÞdWðt0Þi ¼ δðt − t0Þdt
inhomogeneously modulated in time to have infinitesimal
mean μðV; tÞ and variance σ2ðV; tÞ. In “current-based” LIF
neurons, both moments are independent from V. Such
diffusion approximation of the current holds in the limit of
large number K of presynaptic contacts and small average
synaptic efficacy J [15,16]. This is the case of cortical
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networks where K ∼ 104 and J ≪ vthr [17,18]. No assump-
tions are made neither on the statistics of single-neuron
spike trains, nor on the stationarity of the moments μ and
σ2. This because synaptic currents result from a super-
position of a large number K of uniformly sparse point
processes (i.e., the spike trains of presynaptic neurons),
which eventually converges to a inhomogeneous Poisson
process [19,20]. In the diffusion limit this process is
approximated by the above Gaussian noise valid also far
from equilibrium.
In this framework also the mean-field approximation

holds such that all neurons of a homogeneous network can
be seen as independent realizations of the same stochastic
process (same F, μ, and σ) [21]. Synaptic interactions are
incorporated in the ν-dependent moments of the current,
which in current-based models like LIF neurons are

μðνÞ ¼ KJνðtÞ þ μext

σ2ðνÞ ¼ KJ2νðtÞ þ σ2ext: ð3Þ

Here, μext and σ2ext are the moments of the synaptic current
due to the spikes incoming from neurons external to the
network. Here we impose them to be constant.
Why are finite-size fluctuations important?—Having

a finite number N of neurons emitting spike trains
SiðtÞ ¼

P
k δðt − ti;kÞ, leads to a fluctuating rate νNðtÞ ¼P

N
i¼1 SiðtÞ=N ¼ N ðtÞ of action potentials fired per unit

time and per neuron. According to the mentioned limit
theorem [19], N ðtÞ is an inhomogeneous Poisson process
with mean NνðtÞ, such that limN→∞ νNðtÞ ¼ νðtÞ. Mean
and variance of νN are ν and ν=N, respectively. For large
enough N (∼100) like those observed in cortical mini-
columns [22], holds the Gaussian approximation

νNðtÞ ¼ νðtÞ þ
ffiffiffiffiffiffiffiffi
νðtÞ
N

r
ΓðtÞ≡ νðtÞ þ ηðtÞ: ð4Þ

Here, the finite-size noise ηðtÞ results from a modulation of
a white noise ΓðtÞ independent from dWðtÞ in Eq. (2). The
correlation structure of η will be self-consistently derived in
the following. Taking into account the fluctuating νN into
Eq. (3), the moments of the input current (i.e., the mean-
field) are no longer deterministic [11]. Fluctuations of the
mean μ have relative size Var½μðνNÞ�1=2=E½μðνNÞ� ¼
1=

ffiffiffiffiffiffi
Nν

p
of about 10% in cortical networks of interest

where ν ∼ 1 Hz [23]. Remarkably, such variability is of
the same order of the changes in μ associated with the
coding of sensorial stimuli [24] or other relevant informa-
tion [25]. Indeed, this process usually involves only a
sparse set of tuned neurons with variations of few Hz in
their firing rates. Thus, finite-size fluctuations may have a
not negligible impact disturbing or nonlinearly amplifying
the encoding dynamics of cortical networks.

How can finite-size fluctuations be incorporated?—To
understand the impact of such fluctuations, according to
[11] we incorporate the stochastic moments μN ≡ μðνNÞ
and σN ≡ σðνNÞ directly into Eq. (1). The resulting
stochastic Fokker-Planck equation describes now an infin-
ite set of independent neurons all driven by the same
fluctuating mean-field. Differently from other stochastic
Smoluchowski equations [4,5] and their coarse-grained
versions [26,27], here stochasticity appears as an additional
probability current with drift and diffusion coefficients
differently affected by ηðtÞ. Not only, this additional source
of noise must be incorporated as a fluctuating source of
realizations in vres [28]. This is due to the fact that the finite
flux of neurons crossing the threshold vthr reenters at the
reset potential, eventually leading to

∂tp ¼ −∂v½ðF þ μNÞp� þ
1

2
∂
2
vðσ2NpÞ

þ δðv − vresÞνNðtÞ: ð5Þ

We remark that this stochastic Fokker-Planck (SFP) equa-
tion is nonlinear as both μN and σN depend on the density p
via the firing rate ν.
Self-consistent derivation of ηðtÞ.—To determine the

statistical features of ηðtÞ we refer to the specific case of
a set of N uncoupled neurons (J ¼ 0) driven by a stationary
external input ( _μext ¼ _σext ¼ 0). In this case neurons are
renewal processes, and the probability density ρðtÞ of their
interspike intervals (ISI) fully characterize the statistics of
the spike trains they emit [29]. Pooling together these spike
trains gives νNðtÞ (see above) such that its power spectral
density is [14,30]

PðRTÞ
ν ðωÞ ¼ jν̂NðωÞj2 ¼

ν0
N
Re

�
1þ ρ̂ðωÞ
1 − ρ̂ðωÞ

�
: ð6Þ

Here ρ̂ðωÞ ¼ R∞
−∞ ρðtÞe−iωtdt and ν̂NðωÞ are the Fourier

transform of ρðtÞ and νNðtÞ, respectively, and ν0 ¼
1=

R
∞
0 tρðtÞdt is the mean firing rate, i.e., the inverse of

the mean ISI.
This exact result must be also obtained from Eq. (5). To

carry out the power spectral density jν̂NðωÞj2 in this case we
resort to the spectral expansion approach introduced in [28]
giving

PðSEÞ
ν ðωÞ ¼ j1þ f⃗ · ðiωI − ΛÞ−1ψ⃗ resj2jη̂ðωÞj2 ð7Þ

(see the Appendix A). If the finite-size noise is assumed to
be white, jη̂ðωÞj2 ¼ ν0=N, it leads to an overestimate of the
power spectral density at relatively low-ω at least under the
“suprathreshold” regime, i.e., when neurons emit spikes
even if σ ¼ 0 [28].
In Eq. (7) we use the eigenfunctions ϕnðvÞ of the non-

Hermitian Fokker-Planck operator L defined from Eq. (1)
as ∂tp≡ Lp. This operator has an infinite spectrum of
discrete eigenvalues λn (n ∈ I) such that Lϕn ¼ λnϕn
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[10,13,28]. The flux fn ¼ 1=2∂vðσϕnÞjv¼vthr of nonsta-
tionary (n ≠ 0) eigenfunctions are the infinite elements
of f⃗ set to 1=τ [31]. The matrix Λ is diagonal with
fΛgnn ¼ λn. The elements of ψ⃗ res are instead the eigen-
function ψnðvÞ of the adjoint operator L† with same λn,
computed in v ¼ vres [13,28]. Note that all these coef-
ficients are state dependent, being functions of the current
moments μ and σ.
In this framework, the crucial observation is that for any

IF neuron model, the series in Eq. (7) can be summed as a
function of ρ̂ðωÞ [32]:

f⃗ · ðiωI − ΛÞ−1ψ⃗ res ¼
ρ̂ðωÞ

1 − ρ̂ðωÞ −
ν0
iω

ð8Þ

(see the Appendix B). Using it in Eq. (7) and requiring the

equivalence PðSEÞ
ν ðωÞ ¼ PðRTÞ

ν ðωÞ, we obtain with Eq. (6) a
self-consistent expression for the power spectrum of η:

jη̂ðωÞj2 ¼ ν0
N

�
1 −

���� ðiωþ ν0Þρ̂ðωÞ − ν0
ν0ρ̂ðωÞ þ iω − ν0

����
2
�
: ð9Þ

This equation is one of the main results of this Letter. In the
limit ω → ∞, ρ̂ðωÞ → 0 and the finite-size noise is white-
like with variance ν0=N. For ω → 0, the lhs of Eq. (8)
reduces to −f⃗ · Λ−1ψ⃗ res ¼ ðc2v − 1Þ=2 [32], the function of
the coefficient of variation cv of the ISIs, leading to

jη̂ð0Þj2 ¼ ν0
N

4c2v
ð1þ c2vÞ2

: ð10Þ

These limits suggest a sigmoidlike power spectra of the
finite-size noise which is confirmed in LIF neurons

[Fig. 1(a)]. For this type of neuron models ρ̂ðωÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
exr

2−xt2
p

D−iωð−
ffiffiffi
2

p
xrÞ=D−iωð−

ffiffiffi
2

p
xtÞwithDνðzÞ the para-

bolic cylinder function, xt ¼ ðvthr − μτÞ=σ ffiffiffi
τ

p
and xr ¼

ðvres − μτÞ=σ ffiffiffi
τ

p
[33]. As the firing regimes moves from

noise- to drift-dominated (i.e., from sub- to suprathreshold)
regimes by increasing the mean current μ, the sigmoidal
shape becomes increasingly more apparent. Indeed, ISIs are
more and more regular leading to a decrease of their cv, and
hence to a lower power jη̂ð0Þj2.
Markovian embedding of ηðtÞ.—Having derived in

Eq. (9) the correlation structure of the finite-size noise
for a set of uncoupled neurons under stationary condition a
question arises: can we generalize this result to networks of
synaptically coupled neurons and far from equilibrium?
To answer this question we remark that the spectra from

Eq. (9) shown in Fig. 1 are flat (white noiselike) with a
power reduction at low-ω possibly resulting by subtracting
a Lorentzian-shaped function. Following [34], such kinds
of spectra are well approximated by two-dimensional
Ornstein-Uhlenbeck processes u⃗ðtÞ driven by and interfer-
ing with the same white noise ΓðtÞ:

du⃗ ¼ Au⃗dtþ b⃗Γdt1=2

η ¼ 1⃗ · u⃗þ
ffiffiffiffi
ν

N

r
Γ: ð11Þ

In Fig. 1(b) we show that for νðtÞ ¼ ν0 this Markovian
embedding faithfully reproduces the correlation structure of
ηðtÞ in the simple case of b⃗ with only one nonzero element,
b1 ¼

ffiffiffiffiffiffiffiffiffi
ν=N

p
, and of a three-parameter A being A11 ¼ A22.

Instead of fitting fA11; A12; A21g, we carry them out
analytically as in [34] by matching the power of η from
Eq. (11) with the exact one in Eq. (9) at the frequencies:
ω ¼ f0; π; 2πgν0. The parameters change according to μ
and σ leading to a state-dependent Aðμ; σÞ.
This dynamical description of ηðtÞ in principle allows us

to overcome the renewal hypothesis. Indeed, here the
memory embedded in the network activity is reintroduced
via the dependence on νðtÞ of the current moments in
Eq. (3). We then conjecture that Eqs. (4), (5), and (11)
provide a complete statistical description of the out-of-
equilibrium dynamics of finite-size networks of spiking
neurons, thus positively answering to the above question.
Effectiveness of the stochastic network dynamics.—To

test this conjecture, we use a network of excitatory LIF
neurons with a distribution of transmission delays of the
emitted spikes. In the limit N → ∞, the chosen network
displays a supercritical Hopf bifurcation as coupling KJ
increases. Here a limit cycle arises through the destabiliza-
tion of an equilibrium point with firing rate ν0 ¼ 20 Hz
(see the Appendix D).
In weakly coupled networks with relatively small KJ,

finite-size noise induces stochastic perturbations of νNðtÞ
around a stable focus amenable to linear response theory.
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FIG. 1. Normalized power spectra of the finite-size noise η for
N uncoupled LIF neurons with firing rate ν0. (a) jη̂ðωÞj2N=ν0 as a
function of the mean synaptic current μ. σ is chosen to keep the
mean firing rate unchanged at ν0 ¼ 20 Hz. (b) In noise-dominate
regime (μτ < vthr ¼ 20 mV) finite-size noise is essentially white
(bottom). In drift-dominate regime, power is low at low-ω as ISIs
are more regular (cv < 1). In both cases, a two-dimensional
Markovian embedding (black) faithfully reproduce theoretical
spectra (red) from Eq. (9).
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This is the case of our example network with KJ ¼ 5 mV
for which the power spectrum of νN can be carried out as a
linear transformation of the finite-size noise [28,35]:

PνðωÞ ¼ jν̂NðωÞj2 ¼ jĤνðωÞj2jη̂ðωÞj2: ð12Þ

Here ĤνðωÞ is the Fourier transfer function characterizing
the linear response to sinusoidal modulations of the input
firing. ĤνðωÞ is analytically known for LIF neurons
[11,36]. In Fig. 2(a), top we show a remarkable agreement
between such Eq. (12) and the power spectral densities
PνðωÞ estimated from both the simulations of spiking
neuron networks (SNN [37]) and the numerical integration
of the SFP Eq. (5). To compute the SFP integration we
extended a standard deterministic approach [38] by incor-
porating the Markovian embedding (11) of ηðtÞ (see the
Appendix C). SFP integration for different network sizes N
confirms in Fig. 2(a), bottom what was expected from the
linear theory, that is, the spectrum shape does not change
with N once normalized by the variance ν0=N. The
equivalence in these cases between SNN simulation and
SFP integration is also apparent in the direct comparison of
νNðtÞ time series. Indeed, in Fig. 2(b) no differences emerge
and both time series display a variance scaling as 1=N, as
expected.
By further increasing the synaptic coupling KJ, the

mentioned Hopf bifurcation is approached (Fig. 4 in
Appendix D) and finite-size networks have PνðωÞ no
longer fully described by linear theory [i.e., Eq. (12)].
The mismatch is apparent in Fig. 3(a), top as an unpredicted
second-harmonic peak at ω=2π ≃ 2ν0 arises in SNN sim-
ulations. On the contrary, the SFP integration displays an
excellent match. Despite such a footprint of nonlinear
dynamics, SNN and SFP keep displaying a remarkable
overlap not only in Pν but also in the stochastic dynamics of
νNðtÞ shown in Fig. 3(b). There coherent oscillations
become more and more apparent as N decreases. In this
case ongoing finite-size fluctuations of νN continuously
stimulate the oscillating relaxation of the stable focus
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(a) Top, PνðωÞ from the numerical integration of the stochastic
Fokker-Planck equation (SFP, pink), the equivalent spiking
neuron network (SNN) simulation (black) and linear perturbation
theory [dashed blue from Eq. (12)] (N ¼ 104). Dashed black,
white noise with variance ν0=N. Bottom, normalized spectra of ν
from SFP of networks with different N (¼ 103; 104; 105).
(b) νNðtÞ from SNN simulations (black) and SFP varying N
(¼ 103; 104; 105) (left). Right, related histograms of νNðtÞ. Other
parameters as in Fig. 4.
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which is relatively slow due to the nearby critical point [see
Fig. 4(b), middle]. The N-dependent coherence of the
fluctuation-driven oscillations is even more apparent in the
increase of power of the second-harmonic peak in smaller
networks [Fig. 3(a), bottom].
The same remarkable match between SFP and SNN is

shown in Fig. 3(c), top beyond the Hopf bifurcation
(KJ ¼ 12 mV) when a stable limit cycle is expected at
N → ∞. Global oscillations in this case are strongly
nonlinear, giving rise to several high-order harmonic peaks.
In this case finite-size noise contributes to dephase the
oscillations limiting their coherence in time [Fig. 3(d)].
According to this, the resonant peaks in PνðωÞ have power
lowering with decreasing N [Fig. 3(c), bottom].
Conclusions.—The agreement between SFP and SNN in

a synchronization phase transition proves that the stochastic
dynamics derived in Eqs. (4), (5), and (11) can faithfully
describe finite networks of spiking neurons far from
equilibrium. Indeed, the theoretical framework we intro-
duce is not perturbative and takes into account the pointlike
(spike-based) nature of the cell-to-cell interactions.
Remarkably, the correlation structure of ηðtÞ here results
from the spiking statistics of isolated neurons, implying
that finite-size noise is not J dependent.
As the self-consistent derivation of η̂ðωÞ in Eq. (9) is

exact, it is valid for any N and hence also for extremely
small networks. However, in addition to this “nonpertur-
bative cornerstone” of our approach, we assume that ηðtÞ is
generated by the embedding in Eq. (11). In doing so, we
approximate νNðtÞ to a Gaussian process in Eq. (4). It
implies that the number of spikes emitted by the network on
its characteristic timescale τ is large (N ≫ 1=ντ). If this is
not the case, the Gaussian νNðtÞ has a not negligible
likelihood to be negative, thus posing a lower bound to
the minimum N we can describe.
Finite-size fluctuations can elicit coherent oscillations

even when equilibrium points are stable at N → ∞. The
size of the network is then a structural feature capable of
amplifying an otherwise damped rhythmic activity. As a
result, a second-harmonic peak in the power spectrum of
the neuronal activity arises even without crossing a critical
point. In brain networks of behaving animals, this kind of
resonant peak has been observed both during sensory
processing [39] and in working memory tasks [40].
Coherent rhythms across networks are supposed to make
information transmission effective [41] and to facilitate the
coordination underpinning several cognitive functions [42].
Oscillations induced by finite-size fluctuations can then
make available a cognitive-relevant substrate without
inducing a phase transition in the network.
Alternative approaches dealing with finite-size networks

of spiking neurons are those relying on the refractory
density method (RDM) [43]. Neurons in this case are
quasistationary renewal processes and the population
dynamics is fully described by the probability density of
a single cell to be into a refractory state [44,45]. In the

RDM, the integro-differential equation governing the
population activity at the mesoscopic scale can incorporate
fluctuations to describe a finite number of neurons [46,47].
However, the quasistationarity hypothesis underlying RDM
may in principle limit its applicability by making our
theoretical framework preferable in dealing with out-of-
equilibrium conditions.
In conclusion, we remark that our theoretical framework

applies to a wide class of spiking neuron models, and it can
be extended to other systems with a finite size. Indeed,
including fluctuations in population density theories can
further advance our understanding of noise-driven out-of-
equilibrium dynamics [6,48]. An example is the metastable
dynamics driven by the rotational components arising from
the broken detailed balance in biological systems [49,50].

We dedicate this work to our friend and colleague
P. Del Giudice. We thank N. Brunel for comments on a
earlier version of the manuscript. Work partially funded by
EU H2020 Research and Innovation Programme, Grant
No. 945539 (HBP SGA3) to M.M.

Appendix A: Spectral expansion and power spectrum
of ν.—Following [28], the SFP Eq. (5) can be rewritten as
an infinite set of differential equations for the projection
coefficients anðtÞ ¼

R
vthr
−∞ ψnðvÞpðv; tÞdv of p onto the

eigenfunctions ψnðvÞ. Briefly, this can be done by applyingR
vthr
−∞ dvψnðvÞ to both sides of Eq. (5), eventually obtaining
the stochastic firing rate equation

_a⃗ ¼ ðΛþ C_νNÞa⃗þ c⃗_νN þ ψ⃗ resη

νN ¼ Φþ f⃗ · a⃗þ η: ðA1Þ
For the sake of simplicity, we resorted to a matrix
formalism where fa⃗gn ¼ anðtÞ, and the “coupling” coef-
ficients cnm ¼ R

vthr
−∞ ϕmðvÞ∂νψnðvÞdv compose the infinite

vector fc⃗gn ¼ cn0 and matrix fCgnm ¼ cnm, given n,
m ≠ 0. The coupling label comes from the fact that these
coefficients directly depend on the synaptic efficacy J as,
from Eq. (3), ∂ν ¼ ∂νμ∂μ þ ∂νσ

2
∂σ2 ∼ J. Here, the “sta-

tionary mode” (n ¼ 0) with λ0 ¼ 0 and probability density
ϕ0ðvÞ has been isolated, and it gives the current-to-rate gain
function Φðμ; σ2Þ≡ f0, i.e., the stationary firing rate ν0 of
the network (see, for instance, [14]). Other definitions are
as in the main text.
Under stationary conditions ( _μext ¼ 0 and _σext ¼ 0), the

firing rate equation (A1) for a set of uncoupled neurons
(c⃗ ¼ 0 and C ¼ 0 being J ¼ 0) reduces to

_a⃗ ¼ Λa⃗þ ψ⃗ resη

νN ¼ Φþ f⃗ · a⃗þ η; ðA2Þ
where all the coefficients are now constant. The Fourier
transform of the firing rate is then ν̂NðωÞ ¼ f⃗ · ˆa⃗ðωÞþ
η̂ðωÞ, where ˆa⃗ðωÞ ¼ ðiωI − ΛÞ−1ψ⃗ resη̂ðωÞ. Given that, an
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explicit expression PðSEÞ
ν ðωÞ ¼ jν̂NðωÞj2 can be worked out

leading to Eq. (7).

Appendix B: ISI density ρ and relaxation dynamics of
ν.—To establish the relationship between the probability
density ρðtÞ of the ISIs and the relaxation dynamics of an
uncoupled set of neurons we follow [32]. Briefly, for
renewal point processes like LIF neurons with initial
condition Vð0Þ ¼ vres, the density νðtÞ of spikes emitted
per unit time has Laplace transform ν̂ðsÞ ¼ R

∞
0 e−stνðtÞdt

given by [14,16]

ν̂ðsÞ ¼ ρ̂ðsÞ
1 − ρ̂ðsÞ ; ðB1Þ

where ρ̂ðsÞ is the Laplace transform of ρðtÞ. Here, the firing
rate νðtÞ can be obtained from Eq. (A2) in the limit N → ∞
(η → 0 such that νN → ν):

_a⃗ ¼ Λa⃗

ν ¼ ν0 þ f⃗ · a⃗: ðB2Þ

Applying the operator
R∞
0 dte−st to both sides of this

system we obtain the following expression

s ˆa⃗ðsÞ − a⃗ð0Þ ¼ Λ ˆa⃗ðsÞ
ν̂ðsÞ ¼ ν0

s
þ f⃗ · ˆa⃗ðsÞ;

yielding the Laplace transform ˆa⃗ðsÞ ¼ ðsI − ΛÞ−1a⃗ð0Þ. For
the mentioned initial conditions, i.e., pðv; 0Þ ¼ δðv − vresÞ,
the projection coefficients at t ¼ 0 result to be fa⃗ð0Þgn ¼R
vthr
−∞ ψnðvÞδðv − vresÞdv ¼ ψnðvresÞ≡ fψ⃗ resgn. Putting to-
gether these results allows us to write

ν̂ðsÞ ¼ ν0
s
þ f⃗ · ðsI − ΛÞ−1ψ⃗ res; ðB3Þ

which, once compared with Eq. (B1), proves Eq. (8)
provided that we move from the Laplace to the Fourier
transform by setting s ¼ iω.

Appendix C: Numerical analysis.—The continuity equa-
tion (1) is a nonlinear PDE with the following boundary
conditions: (i) neurons emitting a spike cross an absorbing
barrier in v ¼ vthr, pðvthrÞ ¼ 0; (ii) after a refractory period
τ0 from spike emission, neurons reenter in v ¼ vres requiring
the conservation of the probability current, Spðvthr; t − τ0Þ ¼
Spðvþres; tÞ − Spðv−res; tÞ; and (iii) membrane potential is
limited to v ≥ vmin by setting a reflecting barrier,
SpðvminÞ ¼ 0. For the sake of simplicity, here τ0 ¼ 0 and
vmin → −∞. To numerically integrate Eq. (1), we resorted to
the open-source software described in [38]. It implements a
voltage and time discretization scheme based on the
Scharfetter-Gummel flux [51] and taking into account the
above boundary conditions. We adapted this software by

incorporating finite-size fluctuations to integrate the SFP
Eq. (5) [52]. Briefly, at each time step dt the firing rate νNðtÞ
of a network composed ofN neurons is computed by adding
the finite-size noise ηðtÞ to the flux νðtÞ ¼ SpðvthrÞ. The
noise ηðtÞ is worked out resorting to the Euler-Maruyama
method to integrate the Itô defined Eq. (11) [53].
In the SFP Eq. (5), we consider the moments of the

synaptic current Eq. (3) being dependent on the rate of
incoming spikes Kν̃ðtÞ instead of KνNðtÞ. This is because
the example networks in Figs. 2 and 3 incorporate a
distribution gðδÞ of axonal delays δ such that

ν̃ðtÞ ¼
Z

∞

0

gðδÞνNðt − δÞdδ; ðC1Þ

where gðδÞ ¼ e−ðδ−δminÞ=τδ=τδ vanishing for any δ < δmin,
and with mean delay hδi ¼ τδ þ δmin. For the numerical
integration we resorted to the equivalent expression
τδ _̃νðtÞ ¼ νNðt − δminÞ − ν̃ðtÞ [28,54]. The reentering flux
in vres of realizations or neurons just having emitted a
spike, is taken into account by setting at each time
step Spðvþres; tÞ − Spðv−res; tÞ ¼ νNðtÞ.
Spiking neuron networks were simulated resorting to the

open source NEST simulator [37]. Network and neuron
parameters are those detailed in Fig. 4. Further details can
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FIG. 4. Bifurcation analysis of the network of LIF excitatory
neurons (N → ∞) studied in Figs. 2 and 3 at varying synaptic
efficacies J. (a) Real and imaginary parts of the poles sd�1 and st1
of νðsÞ solving Eq. (D2). Weakly coupled networks (small KJ,
blue range) have a stable focus in ν0. Beyond KJ ≃ 11 mV (red)
limit cycles arise via a codimension-1 supercritical Hopf bifur-
cation. (b) Numerical integration of the Fokker-Planck equation
with pðv; 0Þ ¼ δðv − vresÞ for KJ ¼ f5; 10; 12g mV pointed out
in (a) (top arrows). The fixed point at ν0 ¼ 20 Hz is kept constant
by setting μτ ¼ 21 and στ1=2 ¼ 2.665 mV, and changing μext and
σext according to J. Other parameters: K ¼ 103, τ ¼ 20 ms,
vthr ¼ 20 mV, δmin ¼ 2 ms, and τδ ¼ 1 ms.
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be found in the freely available PYTHON scripts we
developed [52].

Appendix D: The example network and its linear
stability.—As a case study (Figs. 2 and 3) we used a
network of LIF excitatory neurons, which in the thermo-
dynamic limit (N → ∞) has an equilibrium point with
ν0 ¼ 20 Hz, Fig. 4.
In the network the spikes are exchanged with the

distribution of axonal delays δ defined in Eq. (C1).
Delayed couplings in an excitatory network can give rise
to limit cycles, making it an ideal workbench to test our
theoretical framework. We then focus on a codimension-1
Hopf bifurcation by changing the synaptic efficacy J > 0
and keeping fixed the firing rate ν0 ¼ Φðμ; σÞ. That is
done by imposing constant moments μðν0Þτ ¼ 21 and
σðν0Þ

ffiffiffi
τ

p ¼ 2.665 mV. According to Eq. (3), it requires
then to vary both μext and σext as a function J.
Following [28], the stability of the equilibrium point is

evaluated by linearizing Eq. (A1) in the limit N → ∞
(η → 0). To this purpose we set νðtÞ ≃ ν0 þ ν1ðtÞ with
ν1ðtÞ ¼ Oðja⃗jÞ and neglect higher-order termsOðja⃗j2Þ. The
firing rate equation then reduces to

_a⃗ ¼ Λa⃗þ c⃗ _̃ν1

ν1 ¼ Φ0ν̃1 þ f⃗ · a⃗; ðD1Þ

where all coefficients and eigenvalues are now computed in
ν ¼ ν0, Φ0 ¼ ∂νΦjν¼ν0

, and τδ _̃ν1 ¼ νðt − δminÞ − ν̃ðtÞ ¼
ν1ðt − δminÞ − ν̃1ðtÞ to take into account the distribution
of delays δ. As done above for Eq. (B2), the Laplace
transform of the firing-rate perturbation ν̂1ðsÞ can be
worked out given that ˆ̃ν1ðsÞ ¼ ν̂1ðsÞe−sδmin=ð1þ sτδÞ ¼
ν̂1ðsÞĝðsÞ. The poles of ν̂1ðsÞ determine the stability of
the equilibrium point. Once ν̂1ðsÞ is made explicit, the
poles are the zeros of its denominator:

1 − ĝðsÞ½Φ0 þ sf⃗ðsI − ΛÞ−1c⃗� ¼ 0: ðD2Þ

As shown in [28], these zeros are well approximated by
taking into account only the two leading eigenmodes [i.e.,
with smallest −ReðλnÞ, here n ¼ −1, 1], such that

sf⃗ðsI − ΛÞ−1c⃗ ≃ s
τ

�
cþ10

s − λþ1

þ c−10
s − λ−1

�
: ðD3Þ

With this in Eq. (D2) we have a third degree equation for s
with the solutions s� ¼ fsd�1; st1g shown in Fig. 4(a). As
we set μτ > vthr, the equilibrium point ν0 is in a supra-
threshold regime and the first two eigenvalues are λ�1 ≃
−2ðπσ=vthrÞ2 � 2πν0 [10,13,28]. With this guess we com-
pute the exact λ�1 by finding the numerical solution of
the characteristic equation ψλðvthrÞ ¼ ψλðvresÞ [13,28].
Knowing the eigenvalues, the coefficients cn0 for the

LIF neuron have an analytic expression in terms of para-
bolic cylinder functions [32]. The poles s� are eventually
computed by making use of these λ�1 and c�10.
In Fig. 4(a), for small enough synaptic couplings KJ, all

poles have negative real parts. The equilibrium point is then
a stable focus (sd�1 are complex conjugates) as shown in
the two example networks with KJ ¼ 5 and 10 mV
[Fig. 4(b), top]. By further increasing KJ, the focus
destabilizes at about 11 mV via a supercritical Hopf
bifurcation giving rise to a stable limit cycle, as shown
in Fig. 4(b), bottom (KJ ¼ 12 mV).
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