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Time metamaterials offer a great potential for wave manipulation, drawing increasing attention in recent
years. Here, we explore the exotic wave dynamics of an anisotropic photonic time crystal (APTC) formed
by an anisotropic medium whose optical properties are uniformly and periodically changed in time. Based
on a temporal transfer matrix formalism, we show that a stationary charge embedded in an APTC emits
radiation, in contrast to the case of isotropic photonic time crystals, and its distribution in momentum space
is controlled by the APTC band structure. Our approach extends the functionalities of time metamaterials,
offering new opportunities for radiation generation and control, with implications for both classical and
quantum applications.
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The electrodynamics of space-time metamaterials, i.e.,
artificial materials whose parameters are modulated in
space and time, has become in recent years a very active
field of research [1–7]. In the special case of pure-time
media [2], a wave propagating in a spatially homogeneous
medium changes its propagation features as the material
properties change uniformly in time [8–11]. The simplest
example is a plane wave subject to a sudden change of
permittivity ε and/or permeability μ. This problem was
studied in the last century by Morgenthaler [12], who
showed that the wave, with given frequency ω and wave
vector k⃗, splits into forward and backward propagating
waves. Both waves retain the original value of k⃗ due to
preserved spatial uniformity of the medium, but oscillate at
a new frequency corresponding to the new dispersion of the
modified medium. An insightful discussion of this time-
reflection effect, with its experimental demonstration for
both water and electromagnetic waves, appears in
Refs. [13–15]. In such a context, a variety of different
platforms for temporal modulation have been considered in
the last few years, enabling intriguing phenomena and/or
mechanisms, such as the inverse prism [16], temporal
aiming [17], complete polarization conversion [18],
extreme energy transformations [19], temporal disorder
[20–22], and nonreciprocity [23].
Of great interest are also problems concerning radiation

by sources (charges, electric dipoles, quantum emitters)
embedded in time-varying media [24–30]. Already in the
1970s it was pointed out by Ginzburg and co-workers that a
charge moving with constant velocity in a homogeneous
medium is bound to radiate if the refractive index changes
in time [24–27]. This early work focused mostly on a single

switching event of the material properties. Recently, it has
been shown that photonic time crystals (PTCs) created by
periodically modulating the scalar permittivity εðtÞ of a
homogeneous isotropic material [31,32] can induce ampli-
fied coherent radiation associated with momentum-gap
modes, of both free moving electrons [28] and oscillating
dipoles [30], based on which the interesting concept of
nonresonant PTC lasers has been proposed.
So far, PTCs have been limited to isotropic media. In this

Letter, we introduce anisotropic photonic time crystals
(APTCs), in which the periodic temporal modulation
pertains to the (relative) permittivity tensor ¯̄εðtÞ character-
izing uniform anisotropic media. We construct a general-
ized temporal transfer matrix formalism to deal with
sources embedded in APTCs, showing that the anisotropy
plays a fundamental role in enriching the radiation features
of these time metamaterials. In particular, we show that a
stationary charge embedded in an APTC emits radiation, in
stark contrast with light emission of free electrons in PTCs,
for which charge motion is required [28]. Based on our
results, we unveil an implicit relation between light
emission of the fixed charge and the band structure of
the APTC, demonstrating exciting opportunities to control
the radiative energy distribution in momentum space for
steering the direction of light emission in space.
Anisotropic photonic time crystals and their band

structure.—We start with the discussion of APTCs without
sources, focusing on the simplest form of an APTC.
Specifically, our APTC is formed by alternating periodi-
cally in time a pair of lossless nonmagnetic media, one
being isotropic and the other one being a uniaxial crystal
[labeled by ðmÞ, m ¼ 1; 2, respectively] [see Fig. 1(a)]. For

PHYSICAL REVIEW LETTERS 130, 093803 (2023)

0031-9007=23=130(9)=093803(6) 093803-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8834-4320
https://orcid.org/0000-0003-2261-804X
https://orcid.org/0000-0002-2509-0175
https://orcid.org/0000-0002-4297-5274
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.093803&domain=pdf&date_stamp=2023-03-03
https://doi.org/10.1103/PhysRevLett.130.093803
https://doi.org/10.1103/PhysRevLett.130.093803
https://doi.org/10.1103/PhysRevLett.130.093803
https://doi.org/10.1103/PhysRevLett.130.093803


simplicity, we neglect material dispersion and use the
principal axes of the uniaxial crystal as our coordinate
system. In these axes, the dielectric tensor of the uniaxial
crystal is ¯̄εð2Þ ¼ diagðε⊥; ε⊥; εkÞ, while the isotropic crystal
is described by ¯̄εð1Þ ¼ ε ¯̄I3 with

¯̄IN being the identity matrix

of order N. In the APTC, the displacement field D⃗ðrÞðr⃗; tÞ
of the total radiation can be written in terms of

the space Fourier transform as D⃗ðrÞðr⃗; tÞ ¼ ½1=ð2πÞ3�×R
kz>0

D⃗ðrÞðk⃗; tÞe−jk⃗·r⃗d3k⃗þ c:c:, where the wave vector

k⃗ ¼ ½kx; ky; kz�T , with c:c: standing for complex conjuga-
tion, and superscripts (r) and T denoting radiation waves
and the transpose operation, respectively. Within each
temporal interval in which the medium is uniaxial, for

given wave vector k⃗, the dispersion relation allows for two

different positive frequencies ωð2Þ
1 ¼ kc0=

ffiffiffiffiffi
ε⊥

p
and

ωð2Þ
2 ¼ kc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk̂2x þ k̂2yÞ=εk þ k̂2z=ε⊥

q
, where c0 is the speed

of light in free space, and k̂α ≡ kα=k, α ¼ x, y, z (with wave

number k≡ jk⃗j) are the direction cosines of k⃗. The two
frequencies correspond to two waves, i.e., the ordinary and

extraordinary waves, propagating in the k⃗ direction
(forward) and having mutually orthogonal electric dis-
placements, D⃗1 ¼ ½−k̂y; k̂x; 0�T and D⃗2 ¼ ½k̂xk̂z; k̂yk̂z;
−ðk̂2x þ k̂2yÞ�T . These two vectors, D⃗1ðk⃗Þ and D⃗2ðk⃗Þ,
together with the vector k⃗, form an orthogonal triplet. In
each temporal interval in which the medium is isotropic, the
pair D⃗1 and D⃗2 can be chosen as a basis supporting two
independent forward waves with the same positive fre-

quency ωð1Þ
1 ¼ ωð1Þ

2 ¼ kc0=
ffiffiffi
ε

p
, essentially treating the

medium as a degenerate uniaxial crystal.

Considering the additional two backward waves (−k⃗
direction) oscillating at the corresponding negative

frequencies −ωðmÞ
1;2 within each temporal slab of the

isotropic (m ¼ 1) or the uniaxial (m ¼ 2) crystal, the total
displacement of the radiation field in momentum space
D⃗ðrÞðk⃗; tÞ for the APTC [see Fig. 1(a)] can be written
compactly as

D⃗ðrÞðk⃗; tÞ ¼
X2
n¼1

D⃗nðk⃗Þ½ 1; 1 �ψnðtÞ; ð1Þ

where the vector ψnðtÞ≡ ½fnðtÞ; bnðtÞ�T consists of the
forward [and backward] time-dependent components

fnðtÞ ∝ ejω
ðmÞ
n t [and bnðtÞ ∝ e−jω

ðmÞ
n t] of the first (n ¼ 1)

and the second (n ¼ 2) wave in medium m.
We proceed to describe the evolution of the radiation in

the APTC, which boils down to studying the time depend-
ence of the total state vector ψðtÞ≡ ½ψ1ðtÞ

ψ2ðtÞ� of the two waves
in k⃗ space, since momentum is conserved upon each
temporal switching event. Free wave propagation in each
temporal slab of the medium m ¼ 1; 2 in the APTC is
described by the block-diagonal matrix

FðmÞ ¼ diagfFðmÞ
1 ; FðmÞ

2
g ð2Þ

with blocks FðmÞ
n ¼ diagfejωðmÞ

n Tm ; e−jω
ðmÞ
n Tmg, n ¼ 1; 2,

which describes the temporal evolution of the state ψðtÞ
within the slab of duration Tm. At a switching event of the
APTC, say, at switching time ts ¼ 0 [see Fig. 1(a)], as the
medium changes abruptly from m ¼ 1 to 2, the state vector
ψðtÞ experiences an instantaneous variation ψðtþs Þ ¼
Jð2;1Þψðt−s Þ with matching matrix [33]

FIG. 1. (a) Schematic of the APTC described in the text. (b),(c) Band structure of the APTC [with ε ¼ 1, ε⊥ ¼ 25, εk ¼ 4, and
T1 ¼ T2 ¼ T=2 in (a)] in momentum k⃗ (normalized to k0 ¼ 2π=Tc0) for (b) ordinary and (c) extraordinary waves. In (c), the red [and
the blue] vertical dashed line intersects the kx − kz plane at k⃗ with the spherical coordinates ð2.5k0; 0.094; 0Þ [and ð2.5k0; 1.477; 0Þ].
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Jð2;1Þ ¼
�
Jð2;1Þ1 0

0 Jð2;1Þ2

�
;

Jð2;1Þn ≡ 1

2ωð2Þ
n

�
ωð2Þ
n þ ωð1Þ

n ; ωð2Þ
n − ωð1Þ

n

ωð2Þ
n − ωð1Þ

n ; ωð2Þ
n þ ωð1Þ

n

�
ð3Þ

following from the continuity of D⃗ and its time derivative
∂D⃗=∂t (or equivalently, the magnetic-flux density B⃗) [5] at
the time interface ts. Similarly, we obtain the matching
matrix Jð1;2Þ ¼ ½Jð2;1Þ�−1 accounting for the rapid evolution
of the state ψðtÞ at the other switching event, say, at time
ts ¼ T2 [see Fig. 1(a)] when the medium changes from
m ¼ 2 to 1. To study the evolution of ψðtÞ in the APTC, the
matching matrix Jð2;1Þ in Eq. (3) and the propagation matrix
FðmÞ in Eq. (2) constitute building blocks.
Of primary interest for our purpose is to study the

transfer matrix M ≡ Fð1Þ½Jð2;1Þ�−1Fð2ÞJð2;1Þ, which de-
scribes the evolution of the state ψðtÞ across one temporal
unit cell of the APTC, of duration T ¼ T1 þ T2 [an
example of such a cell is indicated in Fig. 1(a) by the
red dashed box, and ψð3T−Þ ¼ Mψð2T−Þ correspond-
ingly]. This matrixM fully describes the long-time dynam-
ics of the APTC, since the transfer matrix for N periods is
simply given by MN. Using Eqs. (2) and (3), the matrix M
turns out to be block diagonal, i.e., M ¼ diagfM1;M2g,
with each block being Mn ¼ Fð1Þ

n ðJð2;1Þn Þ−1Fð2Þ
n Jð2;1Þn ,

n ¼ 1; 2. The first and the second blocks M1 and M2

are associated with the ordinary and the extraordinary
waves of the uniaxial crystal, respectively. Using the blocks
Mn, we obtain their band structure separately by solving the
secular equations

detfMnðk⃗Þ − ejΩnσT ¯̄I2g ¼ 0; n ¼ 1; 2; ð4Þ

where Ωnσ is the Floquet frequency, with the subindex σ ¼
� labeling different eigenvalues. In Figs. 1(b) and 1(c), we
consider the APTC shown schematically in Fig. 1(a) with
parameters ε ¼ 1, ε⊥ ¼ 25, εk ¼ 4, and T1 ¼ T2 ¼ T=2
[38], and plot the complex dispersion relation of the
ordinary [Fig. 1(b)] and extraordinary [Fig. 1(c)] waves
propagating in the kx − kz plane. To understand these band
structures, we note that the blocks Mnðk⃗Þ, n ¼ 1, 2 in
Eq. (4) can be parametrized as Mn ¼ ½and�n

dn
a�n
� and satisfy

detMn ¼ 1 based on Eqs. (2) and (3) (see also Ref. [21]).
Correspondingly, their eigenvalues are given by λn�≡
ejΩn�T ¼ Rean �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReanÞ2 − 1

p
. If ðReanÞ2 < 1, we have

jλnþj ¼ 1=jλn−j ¼ 1 and thus ImðΩn�TÞ ¼ 0, leading to
oscillations in time without systematic growth or decay. On
the other hand, when ðReanÞ2 > 1, the eigenvalues λn� are
real and jλnþj ¼ 1=jλn−j ≠ 1. In this case, ImðΩn�TÞ ≠ 0
and one eigenstate grows exponentially in time while the
other decays. Generally, which of these two cases is

realized depends on k⃗ producing bands and gaps in
momentum space.
For ordinary waves (block M1), the band structure is

consistent with the one of PTCs, and it does not depend on
the propagation direction of the waves [see Fig. 1(b)],

following from the direction cosines k̂α-independent ω
ðmÞ
1

for M1. In contrast, in the case of extraordinary waves, the
band structure determined by the block M2 is anisotropic,
since Ω2σ depends not only on the magnitude of the wave
vector k⃗ but also on its direction [see the direction

dependence of ωð2Þ
2 and Fig. 1(c)]. This feature implies

remarkable features unique to APTCs: For instance,
whether the waves in APTCs are amplified (and how
strongly) depends on their momentum directions.
Interestingly, the gaps in the APTC band structure can
close when fixing the wave number k [for instance, at k ¼
2.5k0 with k0 ¼ 2π=Tc0 in Fig. 1(c)] and varying the
direction cosines k̂α, or more precisely, only the polar angle
θ, since, due to the rotational symmetry of the considered
APTC, the band structure is invariant with respect to the
azimuthal angle φ.
Radiation by a stationary charge in APTCs.—Next, we

study the effect of a stationary point charge Q in the
considered APTCs. Clearly, the existence of a stationary
charge does not affect the free propagation of radiation
fields in static media, so that the evolution of the state ψðtÞ
dictating the radiation D⃗ðrÞðk⃗; tÞ in Eq. (1) is determined by
the same propagation matrix FðmÞ in Eq. (2) within each
temporal slab of the APTC [see Fig. 1(a)]. Nevertheless,
due to the presence of the charge Q, the effects of the
temporal interfaces on the radiation fields can change
dramatically. Assume for instance that the charge Q is
fixed at the origin r⃗ ¼ 0. As a result, the total displacement
field in momentum space becomes D⃗ðk⃗; tÞ ¼ D⃗0ðk⃗; tÞþ
D⃗ðrÞðk⃗; tÞ, which includes also a particular solution due to
the source Q,

D⃗0ðk⃗; tÞ ¼
jQ

k⃗ · ¯̄εðtÞk⃗
¯̄εðtÞk⃗ ð5Þ

with the matrix ¯̄εðtÞ ¼ ¯̄εðmÞ yielding electrostatic parts

D⃗0ðk⃗; tÞ ¼ D⃗ðmÞ
0 ðk⃗Þ, respectively, for time t within the

temporal slab of the crystal m ¼ 1 or 2 [see Fig. 1(a)].
Correspondingly, based on the same temporal boundary
conditions for Eq. (3), the matching relation for the state
ψðtÞ of the radiated fields becomes [33]

ψðtþs Þ ¼ Sð2;1Þ þ Jð2;1Þψðt−s Þ ð6Þ

with the extra source term Sð2;1Þ ¼ s21½0; 0; 1; 1�T [where
the prefactor s21 ¼ jQΔε cos θ=½kð1þ Δε cosð2θÞÞ� with
Δε ≡ ðεk − ε⊥Þ=ðεk þ ε⊥Þ] for the temporal interface at
time ts when the medium switches from m ¼ 1 to 2.
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Indeed, the source term Sð2;1Þ appears in Eq. (6) due to the

mismatch between the electrostatic solutions D⃗ð1Þ
0 ðk⃗Þ and

D⃗ð2Þ
0 ðk⃗Þ of the chargeQ inm ¼ 1 and 2 [see also Ref. [39] ],

producing spontaneous emission of extraordinary waves
even when the radiation fields vanish before switching, i.e.,
ψðt−s Þ ¼ 0 [25]. We note that the source term Sð2;1Þ ¼ 0
when εk ¼ ε⊥, which corresponds to a conventional (iso-
tropic) photonic time crystal. Indeed, stationary charges are
not expected to radiate in such a scenario. Similarly, an
extra source term Sð1;2Þ related to Sð2;1Þ in Eq. (6) by Sð1;2Þ ¼
−½Jð2;1Þ�−1Sð2;1Þ ¼ −Sð2;1Þ emerges at the other switching
event of the APTC in Fig. 1(a) when the medium switches
from m ¼ 2 to 1.
Now, we are ready to study the radiation by a stationary

charge Q embedded in the APTC. We assume that initially,
i.e., prior to time t ¼ 0, there is no radiation field, so that
the initial state of radiation ψð0−Þ ¼ 0. Then, we study the
effects of the first modulation cycle of the APTC. At the
first switching event at time t ¼ 0, the medium switches
from the crystal m ¼ 1 to 2, producing a radiation field
ψð0þÞ ¼ Sð2;1Þ [see Eq. (6)]. This field freely propagates in
the medium m ¼ 2 for a time interval T2, resulting in
ψðT−

2 Þ ¼ Fð2ÞSð2;1Þ. Next comes the switching event back
to the medium m ¼ 1 at time t ¼ T2, which multiples
ψðT−

2 Þ by the matching matrix Jð1;2Þ, and, in addition, it
creates a new radiation field Sð1;2Þ. Thus, we have
ψðTþ

2 Þ ¼ Sð1;2Þ þ Jð1;2ÞψðT−
2 Þ. The cycle is completed by

free propagation for duration T1 in medium m ¼ 1, so that
ψðT−Þ ¼ Fð1ÞψðTþ

2 Þ. Putting these pieces together, we can
write the radiated field at the end of the first modulation
cycle as ψðT−Þ ¼ ðFð1Þ −MÞSð1;2Þ, or equivalently,

ψ1ðT−Þ ¼ 0 and ψ2ðT−Þ ¼ −s21ðFð1Þ
2 −M2Þ½11�, where

M ¼ Fð1ÞJð1;2ÞFð2ÞJð2;1Þ is the same unit-cell transfer
matrix as introduced before. Indeed, it is generally true
that the radiation field produced by the APTC in Fig. 1(a),
when ψð0−Þ ¼ 0, does not involve ordinary waves, i.e.,
ψ1ðt > 0Þ ¼ 0, due to the fact that the source term creates
only extraordinary waves [see Eq. (6)], and that they
propagate independently from the ordinary waves [see
Eqs. (2) and (3)]. Repeating the above recursion nt times,
we obtain the total radiation field after nt modulation
cycles [33]

ψ2ðntT−Þ ¼ −s21
¯̄I2 −Mnt

2

¯̄I2 −M2

ðFð1Þ
2 −M2Þ

�
1

1

�
; ð7Þ

which connects the radiation field of the APTC to the band
structure of extraordinary waves via M2 [see Eq. (4)].
The APTC with a stationary charge not only supports

radiation fields, but it also controls their energy distribution
in momentum space. To see this, we study the time-
dependent evolution of the energy distribution in momen-
tum space of the radiation field based on Eq. (7). At each

time t ¼ ntT−, the fields are present in the isotropic medium
m ¼ 1, and thus the total electromagnetic energyWEMðtÞ¼
½1=ð2πÞ3�Rkz>0wEMðk⃗;tÞd3k⃗ with energy density in mo-

mentum space wEMðk⃗;tÞ¼wðsÞ
EMðk⃗;tÞþwðrÞ

EMðk⃗;tÞ, which in-

volves the constant electrostatic part wðsÞ
EMðk⃗; tÞ ¼ Q2=

ðε0εk2Þ and the radiation part wðrÞ
EMðk⃗; tÞ ¼ 2sin2θj

ψ2ðtÞj2=ðε0εÞ. In Fig. 2, we choose the same parameters
as in Figs. 1(b) and 1(c), and show the normalized radiative

energy density ŵðrÞ
EMðk⃗; tÞ≡ wðrÞ

EMðk⃗; tÞ=max
k⃗

wðrÞ
EMðk⃗; tÞ after

different modulation cycles. As shown, the radiative energy

density ŵðrÞ
EMðk⃗; tÞ spreads over a relatively large momentum

space near k ¼ 0 initially [Fig. 2(a)] due to the prefactor
s21 ∝ 1=k of the source in Eq. (7). With increasing modu-
lation cycles, the modes in the band gaps with nonzero
imaginary frequency grow exponentially and start to domi-
nate in momentum space [Fig. 2(b)]. When the number of
modulation cycles becomes larger [Figs. 2(c)–2(f)], the

radiative energy ŵðrÞ
EMðk⃗; tÞ increasingly localizes around

the momentum with k ≈ 2.5k0 and θ ≈ 0.094 [33], where
the gapmodes have the relatively larger imaginary frequency
jImðΩ2σTÞj (and thus growing rate) [Fig. 1(c)] within the k⃗
range of initial excitations [Fig. 2(a)], forming a highly
directional nonresonant laser source tunable by manipu-
lating the momentum band gaps [33]. In contrast with the
nonresonant tunable laser based on PTCs proposed in
Refs. [28,30], the extreme lasing directionality in APTCs
is achieved due to their inherent anisotropic band structure,
which does not require source manipulation, such as precise
control of the movement of free charges for delicate phase
matching required to sustain the radiation process [28].
To illustrate better the evolution of the radiation field in

momentum space, we study the distinct dynamics of the
magnetic-flux density B⃗ðk⃗; tÞ in the band gap and band,

FIG. 2. Normalized radiative energy ŵðrÞ
EMðk⃗; tÞ in momentum

space at various time instants (a) t ¼ T−, (b) t ¼ 4T−,
(c) t ¼ 7T−, (d) t ¼ 10T−, (e) t ¼ 13T−, and (f) t ¼ 16T− of
the APTC in Fig. 1(a) due to an embedded stationary charge. The
initial radiative energy at time t ¼ 0− is zero, and the other
parameters are the same as in Figs. 1(b) and 1(c).
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respectively. For the APTC with a stationary charge, B⃗ðk⃗; tÞ
is associated only with the radiation, and it reads

B⃗ðk⃗; ntT−Þ ¼ B⃗ð1Þ
2 ðk⃗Þ½1; − 1�ψ2ðntT−Þ [with the basis

state B⃗ð1Þ
2 ðk⃗Þ ¼ D⃗1ðk⃗Þη0=

ffiffiffi
ε

p
] after nt modulation cycles,

where η0 is the characteristic impedance of free space. In
Fig. 3, we choose two representative momenta k⃗ ¼ k⃗l, l ¼
1; 2 with spherical coordinates ðk; θ;φÞ ¼ ð2.5k0; 0.094; 0Þ
and ð2.5k0; 1.477; 0Þ in the band gap and band [see
Fig. 1(c)] and show the only nonzero component
Byðk⃗l; tÞ as a function of the time calculated both solving
Maxwell’s equations numerically (solid lines) and using
Eq. (7) (empty circles). As shown, starting from zero initial
values without radiation, the gap mode grows exponentially
[Fig. 3(a) and lower inset] and takes over the bounded band
mode [Fig. 3(b)] after a few modulation cycles, steering the
direction of light emission in space; see upper insets for
individual snapshots at time t ¼ 6T and Ref. [33] for full
animations.
Conclusions.—In this Letter, we introduced the concept

of APTCs formed by photonic time crystals involving
anisotropic media and developed a generalized temporal
transfer matrix formalism to study APTCs with sources. We
showed that APTCs enable radiation of a stationary charge
and manage emission features due to their reconfigurable
(anisotropic) band structure in momentum space. Our
approach greatly extends the concept of nonresonant
tunable PTC lasers proposed in Refs. [28,30] to the
scenario of stationary charges, and it showcases unique
opportunities to leverage time interfaces, anisotropy, and
electrostatic fields to efficiently produce directional
dynamic nonresonant lasing. This concept may be further
generalized by incorporating non-Hermitian elements [19]

to push its boundaries toward the full control of light
emission via time metamaterials without spatial structures,
with implications for laser technologies and classical and
quantum photonic applications. Furthermore, these con-
cepts may be fruitfully implemented in other physical
domains, such as for acoustic waves.
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