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We consider the Sudakov form factor in planarN ¼ 4 supersymmetric Yang-Mills theory in the off shell
kinematical regime, which can be achieved by considering the theory on its Coulomb branch. We
demonstrate that for up to three loops both the infrared-divergent as well as the finite terms do exponentiate,
with the coefficient accompanying log2ðm2Þ determined by the octagon anomalous dimension Γoct. This
behavior is in stark contrast to previous conjectural accounts in the literature. Together with the finite terms
we observe that for up to three loops the logarithm of the Sudakov form factor is identical to twice the
logarithm of the null octagon O0, which was recently introduced within the context of integrability-based
approaches to four point correlation functions with infinitely large R charges. The null octagon O0 is
known in a closed form for all values of the ’t Hooft coupling constant and kinematical parameters. We
conjecture that the relation between O0 and the off shell Sudakov form factor will hold to all loop orders.
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Introduction.—Gauge theories are the cornerstones of
the standard model of particle physics. Its unbroken gauge
symmetries yield massless (Abelian) photons and (non-
Abelian) gluons. Qualitatively, a highly energetic state,
charged under corresponding gauge groups, emits vast
amounts of these low-energy bosons as it propagates
through the vacuum without experiencing any recoil.
This implies that the original bare state is not what is
measured by the detector; rather, it is the one dressed by a
cloud of soft bremsstrahlung. This compound is the new
physical state of the theory. Quantitatively, all scattering
amplitudes involving either the aforementioned bare state
alone or it being accompanied by a finite number of gauge
bosons decay exponentially fast expð−hni=2Þ with the
average number of soft-collinear gauge bosons hni diverg-
ing double-logarithmically in an infrared cutoff m as
hni ¼ α log2m, α > 0. This is the well-known infrared
(IR) catastrophe. A finite result is then obtained provided
one takes into account an infinite number of accompanying
soft gauge bosons, i.e., for the dressed physical state.
The precise cancellation mechanism is governed by
the Kinoshita-Lee-Nauenberg theorem. As a result, the

dependence on m cancels out but a finite remainder is left,
so one has to know the precise form of the accompanying
coefficient α. This can be done by studying the IR behavior
of (virtual) quantum corrections to the scattering amplitude
of l bare states on an external source O. The quantity in
question is known as the form factor, and its IR double-
logarithmic limit as the Sudakov form factor [1],

F ¼ h1; 2;…;ljOj0i=h1; 2;…;ljOj0itree: ð1Þ

Apart from being of great interest in its own right, it
encodes the IR structure of multiparticle scattering ampli-
tudes ubiquitous to any high-energy scattering calculation.
For Abelian gauge theories, like QED, the Sudakov form

factor is known to be one-loop exact, i.e., the average
number of soft photon emissions, and thus α, does not
receive correction beyond the first loop order. Both off shell
[1] and on shell [2] bare states were analyzed, and the
difference in the corresponding values of α was found to be
two, i.e., αoff ¼ 2αon. The doubling is a consequence of an
additional integration domain [3,4], dubbed the ultrasoft, in
loop momenta giving leading contributions on par with
soft-collinear regions intrinsic to both.
In non-Abelian theories, such as QCD, the situation is far

from being obvious, despite the fact that resummation of
leading and subleading logarithms does not deviate from its
Abelian counterpart [5,6]. First, the noncommutativity of
gauge bosons destroys the Poissonian nature of their
emission—they are no longer independent—and the
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coefficient α receives quantum effects to all orders in the
Planck’s constant. Second, existing literature [7] suggests
that QCD merely echoes the QED story and the off shell-on
shell discrepancy is again the very same factor of two. The
goal of this study is to demonstrate that this conclusion is
precarious and the change requires the introduction of a
new function of the coupling rather than just an overall
multiplicative constant.
QCD is notoriously hard to solve, even in the quest for

reaching sufficiently high orders of its perturbative series.
So practitioners in the field often rely on a simpler QCD
cousin, the four-dimensional maximally supersymmetric
Yang-Mills theory (N ¼ 4 SYM). Both theories share
similar properties at weak coupling. Folklore has it that
for many observables the most complicated portions of
QCD results coincide with complete contributions of the
latter theory. This is known as the principle of maximal
transcendentality [8]. N ¼ 4 SYM is believed to be an
integrable theory in the planar limit, so one may hope to
find closed-form expressions for matrix elements such as
scattering amplitudes or form factors.
The on shell form factors of SU(Nc) singlet operators O

received a great deal of attention within N ¼ 4 SYM,
starting from Ref. [9] where the l ¼ 2 case was considered
at the second order of perturbation theory and culminating
with recent studies that reached two-loop accuracy for four-
leg amplitudes [10] and a staggering eight-loop order for a
three-particle state [11]. Moreover, form factors with more
than two legs are amenable to integrability-based tech-
niques [12] deeply rooted in their duality to periodic null
Wilson loops [13]. The IR exponent α of their soft limit is
always driven by a universal function known as the cusp
anomalous dimension Γcusp [14]. The latter is known as a
solution to a flux-tube integral equation [15] at any value of
the gauge coupling in planar limit. It is widely believed that
Γcusp governs the IR behavior of all matrix elements in the
theory such as scattering amplitudes or form factors in
many kinematical regimes.
The off shell case, on the other hand, received virtually

no attention up until very recently, merely being indulged a
discussion in passing (see, e.g., Ref. [16]) and mirroring the
QCD conjecture alluded to above. Recent results of
Ref. [17] however suggest that the actual difference
between on shell and off shell matrix elements in N ¼
4 SYM is far more involved than previously thought.
Reference [17] found that the IR behavior of the four-gluon
amplitude in N ¼ 4 SYM on the Coulomb branch (i.e.,
theory with the spontaneously broken gauge symmetry),
which can be considered as the amplitude in the off shell
kinematics, is not driven by Γcusp, but rather by a com-
pletely different function Γoct. Two-loop computations of a
five-leg amplitude in similar kinematics also point toward
the conclusion that the IR asymptotic is controlled by Γoct
[18]. This raises an immediate question: what is the true IR
behavior of the off shell Sudakov form factor in N ¼ 4

SYM and other gauge theories such as QCD in light of its
paramount role in soft-gluon physics?
The main practical aim of this Letter is to report on a

calculation of the two-leg off shell Sudakov form factor F
to three loops in planar N ¼ 4 SYM. Our findings can be
summarized by the following concise formula for logF:

logF ¼ −
ΓoctðgÞ

2
log2ðtÞ −DðgÞ þOðm2Þ; ð2Þ

where the bra-state of the matrix element in its left-hand
side depends on the outgoing particles’ momenta p1;2,
obeying the off shell condition −p2

i ¼ m2. Momentum
conservation reduces the dependence of F only to
q ¼ p1 þ p2, which is the momentum incoming to the
composite operator O such that F depends only on the
dimensionless variable t≡m2=Q2 with Euclidean
−q2 ¼ Q2 > 0. The asymptotic behavior of the Sudakov
form factor in the limit m2 → 0 is determined by two
functions of the ’t Hooft coupling g2 ¼ g2YMNc=ð4πÞ2,
ΓoctðgÞ, and DðgÞ, which are given by the following
elementary functions:

ΓoctðgÞ ¼
2

π2
log ½cosh ð2πgÞ�;

DðgÞ ¼ 1

4
log

�
sinhð4πgÞ

4πg

�
: ð3Þ

Surprisingly not only the logarithmic term but also the
finite function admits a closed-form expression in g and
coincide with the corresponding expressions of Refs. [19]
obtained for a completely different object in N ¼ 4 SYM,
which the authors of Ref. [17] conjectured to be dual to off
shell scattering amplitudes.
Techniques used.—The starting point of our analysis was

Eq. (1) for l ¼ 2, with O being the lowest component of
the stress-tensor supermultiplet [20–23], in the off shell
Euclidean kinematical regime introduced at the end the
previous section. All states propagating in quantum loops
are strictly massless. To do this in a gauge-invariant and
self-consistent manner we relied on the approach advocated
by Refs. [17,24], which is based on the observation that the
amplitude’s integrand on the Coulomb branch of the planar
N ¼ 4 SYM is equivalent to the ones in the maximally
supersymmetric theory with unbroken gauge symmetry but
in higher dimension, i.e., D > 4 [17,24,25]. The mass-

less D-dimensional momenta are decomposed as pðDÞ
i ¼

ðpð4Þ
i ; mðD−4Þ

i Þ such that their extradimensional compo-

nents mðD−4Þ
i could then be interpreted, from the four-

dimensional perspective, as masses [17,24]. Further we
adopted yet another observation which states that loop
integrands of the two-leg form factor, similarly to four-leg
amplitudes considered in Ref. [17], are identical in all even
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dimensions D ≤ 10, at least for the first few orders of
perturbation theory [26].
The last remark allowed us to recycle Feynman graphs of

Ref. [26] defining the four-dimensional on shell Sudakov
form factor for ourD-dimensional integrands with the same
topologies and accompanying coefficients. Then we chose
D > 4 components of all momenta in the integrand in such
a manner that they yield vanishing extradimensional
invariants and thus correspond to strictly massless internal
lines of scalar integrals in D ¼ 4, while all external lines
are kept massive (or, equivalently, they obey the off shell
conditions −p2

i ¼ m2
i → 0). Practical implementation of

this condition from the point of view of momentum
conservation in a given graph becomes obvious from the
dual coordinates’ point of view where mi ≡ yi − yiþ1 with
the vectors of (complex-valued) vacuum expectation values
yi being lightlike y2i ¼ 0. Having constructed the inte-
grands in this manner, the integrations over loop momenta
are then performed strictly in D ¼ 4. This off shell form
factor can therefore be interpreted as a form factor of a pair
ofW bosons in the small mass limit similarly to the point of
view of Ref. [17] for the off shell four-leg scattering
amplitude.
Up to three loops, the off shell Sudakov form factor is

given by the perturbative expansion

F ¼ 1þ g2F1 þ g4F2 þ g6F3 þOðg8Þ; ð4Þ

with one- and two-loop corrections given by the scalar
integrals

F1 ¼ 2Q2T1;1; F2 ¼ Q4ð4T2;1 þ T2;2Þ ð5Þ

(see Fig. 1), and the three-loop term being

F3 ¼ Q4ðQ28T3;1 − 2T3;2 þ 4T3;3 þ 4T3;4

− 4T3;5 − 4T3;6 − 4T3;7 þ 2T3;8Þ; ð6Þ

with Q2 ¼ −q2 (see Fig. 2). At one and two loops, all
integrals can be expressed in terms of the l-loop triangle
ladder function ΦðlÞðx; yÞ with equal arguments Φl ≡
ΦðlÞðt; tÞ [27]:

ð−Q2ÞT1;1¼Φ1; ð−Q2Þ2T2;1¼Φ2; ð−Q2Þ2T2;2¼Φ2
1:

ð7Þ

The small-t expansion of Φ1;2 admits the following form:

Φ1 ¼ log2ðtÞ þ 2ζ2 þOðm2Þ;

Φ2 ¼
log4ðtÞ

4
þ 3ζ2 log2ðtÞ þ

21ζ4
2

þOðm2Þ: ð8Þ

We would like to remind the reader that in contrast to the
case of dimensional regularization there is no analog of
ϵ × 1=ϵ interference between different order in ’t Hooft
coupling, and the relations [Eq. (8)] are sufficient to
completely determine F1 and F2 up to Oðm2Þ terms. It
is also worth pointing out that contrary to the familiar
amplitude story, visually nonplanar graphs (see T2;2 in
Fig. 1 and T3;3, T3;4, T3;5, T3;6, T3;8 in Fig. 2) contribute on
equal footing with planar graphs at leading order in color;
see, e.g., Ref. [9]. The reason is that the composite operator
O entering the matrix element [Eq. (1)] is an SU(Nc) singlet
thus rerouting the flow of SU(Nc) indices through graphs.
In the current analysis, nonplanar graphs do not possess
1=Nc power suppressed structures though. The latter
emerge starting from four-loop order only.
The three-loop scalar integrals T3;i from Fig. 2 are more

involved compared with their one- and two-loop counter-
parts. These perfectly fit into the set of auxiliary integrals
studied in Ref. [28]. We used the package LITERED [29] for
their reduction to a set of master integrals calculated in
Ref. [28] making use of the method of differential equa-
tions [30–32]. The so-determined integrals were in turn

FIG. 1. Scalar integrals contributing to F at one- and two-loop
order. Double external lines correspond to the momentum q ¼
p1 þ p2 carried by the operator. Thin external lines correspond to
the particles’ momenta p1;2. All internal lines are massless.

FIG. 2. Scalar integrals contributing to F at three loop level. Arrows and labels pa, pb on the lines correspond to the presence of
numerator ðpa þ pbÞ2. All other notations are identical to those of Fig. 1.
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expressed in terms of Harmonic Polylogarithms (HPLs) of
the single argument t of a weight not greater than 6. After
that they were expanded at small values of t using the HPL
package [33].
To partially cross check our findings, we calculated the

IR divergent, i.e., log2ðtÞ, partly making use of the strategy
of regions [34] (see also Refs. [35,36]), reformulated in the
language of the Feynman-parameter representation in
Ref. [37]. We relied on their algorithmic determination
with the help of the package ASY [38,39] (also available
with the FIESTA5 distribution package [40]), which is based
on the geometry of polytopes associated with Symanzik
polynomials defining corresponding integrands. For each
of the integrals involved, the strategy of regions yielded
scaleless parametric integrals which were evaluated by
using their Mellin-Barnes representation (see, e.g.,
Chapter 5 of Ref. [36]). We found a perfect agreement
between these two approaches. Details regarding these
computations will be published elsewhere [41].
Expanding our three-loop results in powers of twe found

that logarithmic and constant parts of all T3;i integrals can
be cast as the Davydychev-Usyukina functions

ð−Q2Þ3T3;1 ¼ Φ3 þOðm2Þ;
ð−Q2Þ2T3;2 ¼ Φ3 þOðm2Þ;

ð−Q2Þ2ðT3;3 − T3;5Þ ¼
1

2
ðΦ3 −Φ1Φ2Þ þOðm2Þ;

ð−Q2Þ2ðT3;4 − T3;6Þ ¼ −Φ1Φ2 þOðm2Þ;
ð−Q2Þ2T3;7 ¼ Φ3 þOðm2Þ;
ð−Q2Þ2T3;8 ¼ Φ1Φ2 þOðm2Þ; ð9Þ

where Φ3 develops the expansion as t → 0:

Φ3 ¼
1

36
log6ðtÞ þ 5ζ2

6
log4ðtÞ þ 35ζ4

2
log2ðtÞ

þ 155ζ6
4

þOðm2Þ: ð10Þ
Expanding logF in powers of g we have found that, up to
the three-loop order, logF is equal to

logFðt; gÞ ¼ −
ΓoctðgÞ

2
log2ðtÞ −DðgÞ þOðm2Þ; ð11Þ

with

ΓoctðgÞ ¼ 4g2 − 16ζ2g4 þ 256ζ4g6 þ � � � ;

DðgÞ ¼ 4ζ2g2 − 32ζ4g4 þ
1024ζ6

3
g6 þ � � � : ð12Þ

This is exactly the logarithm of the null octagon [19,42]
O0ðz; z̄Þ multiplied by 2:

logO0ðz; z̄Þ¼−
ΓoctðgÞ

4
log2

�
z̄
z

�
−
g2

2
logðzz̄Þ−DðgÞ

2
; ð13Þ

with zz̄ ¼ 1; z̄ ¼ ffiffi
t

p
. The functions of the ’t Hooft coupling

ΓoctðgÞ and DðgÞ are given to all orders of perturbation
theory by the closed formulas [Eq. (3)]. We conjecture that
this relation holds for all loops as well:

logF ¼ 2 logO0 þOðm2Þ: ð14Þ

Discussion and conclusion.—We observe that the off
shell Sudakov form factor in planarN ¼ 4 SYM reveals an
intriguing and unbeknownst to date structure. As was
pointed out in the Introduction, there was a conjecture in
the literature [16] for an all-order evolution equation that F
is anticipated to obey, namely,

∂ logF
∂ logm2

¼ −ΓcuspðgÞ logm2 þ ΓcolðgÞ; ð15Þ

where [15]

ΓcuspðgÞ ¼ 4g2 − 8ζ2g4 þ 88ζ4g6 þ…: ð16Þ

We conclude that this equation is valid only at the one-loop
level and should be replaced with

∂ logF
∂ logm2

¼ −ΓoctðgÞ logm2: ð17Þ

There are two obvious differences: (i) the leading IR
function is not Γcusp, which is thought of as an ultimate
IR exponent of all gauge theories, and (ii) the so-called
collinear anomalous dimension Γcol is absent in the off shell
kinematics, at least to three-loop order. Based on this, we
believe that the same disparity persists between the two
regimes in QCD as well.
Prior to our current analysis there were earlier studies of

form factors on the Coulomb branch where, however, the
choice of scalar vacuum expectation values was done in a
way such that all external states were massless, but a vir-
tual particle “framing” Feynman graphs was massive
[24,43,44]. In this case, the evolution equation was found
to coincide with the one in the massless case [Eq. (15)],
albeit with Γcusp → Γcusp=2. Thus, we observe a very subtle,
anomalous effect of the noncommutativity of p2

i → 0 and
ϵ → 0 limits. We can expect that the situation in QCD will
be similar. We will address these questions in upcoming
publications in full detail.
Another mysterious relation we would like to unravel is

how the off shellness relates to the flux-tube origin of the IR
exponents Γcusp and Γoct in N ¼ 4 SYM. It turns out that
both of them can be obtained from a single deformed flux-
tube integral equation [45], which combines the two
describing Γcusp [15] and Γoct [19] separately.
Relations (9) and (7) between integrals also deserve a

dedicated study. They can be thought of as a manifestation
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of the dual conformal symmetry of form factors which was
anticipated for quite some time [46,47].
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