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We study the formation and evolution of topological defects that arise in the postrecombination phase
transition predicted by the gravitational neutrino mass model in Dvali and Funcke [Phys. Rev. D 93,
113002 (2016)]. In the transition, global skyrmions, monopoles, strings, and domain walls form due to the
spontaneous breaking of the neutrino flavor symmetry. These defects are unique in their softness and
origin; as they appear at a very low energy scale, they only require standard model particle content, and they
differ fundamentally depending on the Majorana or Dirac nature of the neutrinos. One of the observational
signatures is the time dependence and space dependence of the neutrino mass matrix, which could be
observable in future neutrino experiments. Already existing data rule out parts of the parameter space in the
Majorana case. The detection of this effect could shed light onto the open question of the Dirac versus
Majorana neutrino nature.
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Introduction.—The origin of the observed small neutrino
masses is one of the greatest puzzles of the standard model
(SM). The most popular directions of model building
beyond the SM usually focus on new physics at high-
energy scales. Many high-energy origins of neutrino
masses have been proposed, which require either hypo-
thetical new particles [1–4] or extra dimensions [5–7] (see
Ref. [8] for a review). These scenarios all depend on
electroweak symmetry breaking, and the resulting neutrino
masses are proportional to (some power of) the SM Higgs
vacuum expectation value.
As an alternative direction, a new low-energy solution to

the neutrino mass problem was proposed in Ref. [9], which
is independent of the SM Higgs vacuum expectation value
and does not require any additional dimensions or particles.
Using the SM particle content coupled minimally to
gravity, it only requires the assumption that pure gravity
contains a nonzero topological vacuum susceptibility,

hRR̃; RR̃iq→0 ≡ lim
q→0

Z
d4xeiqxhT½RR̃ðxÞRR̃ð0Þ�i

¼ const ≠ 0; ð1Þ

in the limit of vanishing momentum q. Here, T is the time
ordering operator, R is the Riemann tensor, and R̃ is its
dual. The condition [Eq. (1)] is equivalent to the statement
that the gravitational analog of the QCD θ-term,

LG ⊃ θGRR̃; ð2Þ

is physical [10–13], meaning that the free parameter
θG ∈ ½0; 2π� is a physically measurable quantity.
If the condition [Eq. (1)] is fulfilled, it was shown that

fermion condensation hf̄fi [14,15] and effective fermion
masses mf [9] emerge at a new fundamental energy scale.
Note that this is true for arbitrary numbers of massless
fermion flavors, as it is enforced by gravitational anomaly
matching conditions [16]. Thus, we get

ΛG ¼ hRR̃; RR̃i1=8q→0 ∼ jhf̄fij1=3 ∼mf: ð3Þ

Phenomenological constraints push this scale into the
range ΛG ∼ 0.1 meV-eV [9,17,18] (see Ref. [19] for more
details). This opens up the possibility that neutrino masses
mνi are generated through a Higgs-like composite field
hΦi≡ hνiνii at low energies [9] instead of high-energy
extensions of the SM.
In this Letter, we will study the topological defects that

form in the late Universe due to this neutrino condensation.
The model [9] predicts a phase transition in the late
Universe after recombination, in which neutrino flavor
symmetry gets spontaneously broken, small effective
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neutrino masses mν ∼ ΛG arise, and pseudoscalar Nambu-
Goldstone bosons ϕ appear [9,15,17]. Moreover, topologi-
cal defects form due to the Kibble mechanism [22],
including skyrmions, global monopoles, strings, and
domain walls (DWs). These defects are very soft, only
require SM particle content, and depend on the Majorana or
Dirac nature of the neutrinos. In the current work, we will
provide a detailed study of the formation, evolution, and
observational consequences of these defects. Beyond these
observational consequences presented here, two more
experimental signatures of this model are postrecombina-
tion relic neutrino annihilation and astrophysical neutrino
decay [9,17,18]. The former prediction can be experimen-
tally verified or falsified with the next-generation cosmo-
logical surveys, while the latter can be tested with future
astrophysical neutrino observatories.
Relic neutrino phase transition.—The low-energy neu-

trino mass model proposed in Ref. [9] predicts that the
cosmological neutrinos remain massless until the very late
Universe, T ≲ TCMB ∼ 0.3 eV. At that time, a neutrino
vacuum condensate forms in a cosmological phase tran-
sition triggered by the gravitational vacuum susceptibility.
The condensation generates small effective neutrino masses
and (pseudo)Goldstone bosons, ϕ≡ fϕk; ηνg, which are
called “gravi-majorons” in Ref. [18]. These neutrino-
composite bosons arise from the spontaneous breaking
of the neutrino flavor symmetry, which reads as Uð3ÞL
in the case of left-handed Majorana neutrinos (for which
k ¼ 1;…; 8) and Uð3ÞL × Uð3ÞR in the case of Dirac
neutrinos (for which k ¼ 1;…; 14); see Eqs. (6) and (13).
The ην boson is analogous to the heavy η0 meson of QCD

and acquires a small mass through the chiral gravitational
anomaly, mην ∼ ΛG [15]. At first sight, one might expect
the ϕk bosons to be massless, since the neutrinos in the
model [9] have no hard masses but only effective ones.
However, loop diagrams involving W-boson and charged-
lepton exchange give rise to tiny mass contributions for
some of the ϕk bosons [see Eq. (12) in the Supplemental
Material [23]],

mϕk
¼ GF

4π
mlΛ2

G ¼ 2 × 10−21 eV

�
ml

mτ

��
ΛG

1 meV

�
2

; ð4Þ

thus explicitly breaking the original Uð3ÞL neutrino flavor
symmetry. The largest (smallest) contributions to the
ϕk-boson masses are given for ml ¼ mτ (ml ¼ mμ).
After the phase transition, the massive relic neutrinos

rapidly decay into the lightest neutrino mass eigenstate,
νi → νj þ ϕk, and bind up or annihilate into the (almost)
massless ϕk bosons, νj þ νj → ϕk þ ϕk [9]. Note that these
bosons only form in the very late Universe and thus do not
alter any early-Universe physics. Almost all neutrinos
convert into this dark radiation in the late Universe, apart
from a negligibly small freeze-out density. This late
“neutrinoless Universe” scenario can only be evaded in

the hypothetical presence of neutrino asymmetries [24].
The absolute neutrino mass scale is constrained by
mν ≲ TCMB ∼ 0.3 eV if the phase transition takes place
instantaneously at a temperature TΛG

∼ ΛG ∼mν [9,25] so
as not to conflict with cosmic microwave background
(CMB) observations. However, the phase transition can
also be supercooled and thus can give rise to relatively large
neutrino masses even at a low apparent transition temper-
ature, TΛG

< ΛG ∼mν ≲ 1.5 eV at 95% C.L. [24,26]. Such
a supercooling mechanism would allow for substantial
energy densities of the ϕk bosons and the topological
defects after the transition.
In the following, we will discuss the neutrino flavor

symmetry breaking patterns from neutrino condensation.
We will first focus on the case that neutrinos are Majorana
particles, followed by a discussion of the Dirac case. We
will restrict our analysis to the minimal SM scenario of
three active neutrino species. However, we wish to empha-
size that there could be additional sterile neutrino species,
which could enhance the neutrino flavor symmetry.
Because of the universality of the gravitational neutrino
mass mechanism [9], the topological structure in the
neutrino sector would be sensitive to the structure of such
hidden-sector sterile neutrinos. Interestingly, because of
the unique role of neutrinos as the lightest and weakest
interacting particles of the SM, this offers an exciting new
opportunity to probe hidden-sector physics.
Symmetry breaking in the Majorana case.—The minimal

version of the SM only contains three left-handed neutrinos
νLα (where α ¼ e, μ, τ is the flavor index) and no right-
handed neutrinos. Thus, the minimal version of the
gravitational neutrino mass model [9] generates effective
Majorana masses for these three left-handed species.
When neglecting SM interactions, the Lagrangian of the

three massless neutrinos only contains a kinetic term,

Lν ¼ iν̄Lα=∂νLα þ H:c:; ð5Þ

where the implicit sum over the flavor index α ¼ e, μ, τ
could be equivalently written as a sum over the mass index
i ¼ 1, 2, 3 [just as in Eq. (12) below]. The Lagrangian in
Eq. (5) has the flavor symmetry

G ¼ Uð3ÞL ¼ SUð3ÞL × Uð1ÞL
Z3

: ð6Þ

This neutrino flavor symmetry is a quotient group because
the SU(3) and U(1) symmetries have a common center,
Uð3Þ ¼ ½SUð3Þ × Uð1Þ�=Z3. On top of the small explicit
breaking through weak effects [Eq. (4)], the flavor sym-
metry in Eq. (6) gets explicitly broken by the chiral
gravitational anomaly [10–13] and spontaneously by
the neutrino condensate [9]. The explicit breaking of the
Uð1ÞL part in Eq. (6) is similar to invisible axion scenarios
[27–33], where the Uð1ÞPQ symmetry is explicitly broken
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by the chiral anomalies of gravity and QCD. For the
spontaneous breaking, the order parameter reads

Φαβ ≡ νTLαCνLβ; ð7Þ

where C ¼ iγ2γ0 is the charge conjugation matrix. Note
that the order parameter is symmetric, Φαβ ¼ Φβα.
The effective potential of the symmetry breaking reads

VðΦÞ ¼ aTrðΦ†ΦÞ þ bTrðΦ†ΦΦ†ΦÞ þ � � �
þ c detΦþ H:c:þ � � � ; ð8Þ

where a, b, and c are unknown numerical coefficients and
detΦ is a ’t Hooft-like determinant [34] which breaks the
Uð1ÞL symmetry in Eq. (6) down to Z6. Note that the
potential in Eq. (8) does not necessarily need to respect
the full U(3) symmetry but could minimally be invariant
under O(3) symmetry only, because the maximal flavor
symmetry of flavor-invariant Majorana masses is O(3).
Gravitational anomaly matching conditions require all

neutrinos to become massive [16], and these masses need to
be different due to the observed neutrino flavor oscillations.
Thus, in the neutrino mass eigenbasis, the vacuum expect-
ation value reads

hΦi ¼

0
B@

hΦ11i 0 0

0 hΦ22i 0

0 0 hΦ33i

1
CA; ð9Þ

where hΦ11i ≠ hΦ22i ≠ hΦ33i for different masses.
In order to determine the resulting flavor symmetry

breaking pattern, we need to find all elements of the initial
group G in Eq. (6) that leave hΦ11i, hΦ22i, and hΦ33i
invariant, which gives us the unbroken symmetry group H.
Among the elements of SUð3ÞL × Uð1ÞL, only the Z2

elements f1; eiπ1g leave the different condensates hΦiii
invariant (for each i ¼ 1, 2, 3, with no sum over repeated
indices). Therefore, we finally get the symmetry group
H ¼ Z2 × Z2 × Z2 from the spontaneous breaking

SUð3ÞL → Z2 × Z2;Uð1ÞL → Z2; ð10Þ

where the elements of Z2 × Z2 are given by

g1 ¼ diagð1;−1;−1Þ; g2 ¼ diagð−1; 1;−1Þ;
g3 ¼ diagð−1;−1; 1Þ; g4 ¼ 1: ð11Þ

Note that this Z2 × Z2 symmetry is explicitly broken by
weak effects at very low energy scales; see Eq. (4).
Symmetry breaking in Dirac case.—As a minimal

extension of the SM, the three left-handed neutrinos νLα
could be accompanied by two or more right-handed
partners. In the following, we will focus on the three-
flavor Dirac neutrino case of the neutrino mass model [9],

noting that the model also allows for mixed active-sterile
neutrinos with both Dirac and Majorana masses.
When neglecting SM interactions, the Lagrangian of the

three massless neutrinos only contains a kinetic term,

Lν ¼ iν̄Lα=∂νLα þ iν̄Rα=∂νRα ¼ iν̄Dα=∂νDα: ð12Þ

In the limit in which all interactions except gravity are
switched off, the Lagrangian has a U(6) flavor symmetry.
When taking into account the small explicit breaking by
the weak interaction [Eq. (4)], the left- and right-handed
sectors cannot mix, and we can write the symmetry as

G ¼ Uð3ÞL × Uð3ÞR
¼ Uð3ÞV × Uð3ÞA

Z2

¼ SUð3ÞV × SUð3ÞA × Uð1ÞV × Uð1ÞA
ZV3 × ZA3 × Z2

; ð13Þ

where L, R, V ¼ Lþ R, and A ¼ L − R denote the left,
right, vector, and axial symmetries, respectively. The L
and R group elements act on νD and take the form
exp½ið1� γ5ÞαaTa�, where the Ta are group generators.
The flavor symmetry G in Eq. (13) is a quotient group
because (i) the SU(3) and U(1) symmetries have a common
Z3 center and (ii) the π rotations of the Uð1ÞV and Uð1ÞA
symmetries are the same element, expðiπÞ ¼ expðiπγ5Þ ¼
−1, which yields Uð1ÞL × Uð1ÞR ¼ ½Uð1ÞV × Uð1ÞA�=Z2.
Similar to the Majorana case [Eq. (6)], the initial flavor

symmetry G in Eq. (13) is explicitly broken by the
gravitational anomaly and spontaneously by the neutrino
condensate [9]. The order parameter in the Dirac case is

ΦD
ij ≡ ν̄iνj ð14Þ

in the mass eigenbasis, and its expectation value hν̄iνji is
bifundamental and obeys hν̄iνii ≠ hν̄jνji for i ≠ j. The
effective potential is similar to the one in Eq. (8).
Among the elements of SUð3ÞA × Uð1ÞA, only the

Z2 elements f1; eiπγ51g leave hν̄iνii invariant (for each
i ¼ 1, 2, 3). Therefore, we get

SUð3ÞA → 1;Uð1ÞA → Z2: ð15Þ

Here, we neglected the explicit symmetry breaking of
Uð1ÞA → Z6 [just as we neglected the explicit breaking
of Uð1ÞL in Eq. (10)] due to the ’t Hooft-like determinant
[Eq. (8)], as discussed in detail in Ref. [23].
Regarding the Uð3ÞV symmetry, any phase transforma-

tion of νi leaves hν̄iνii invariant. Therefore, we get three
unbroken U(1) symmetries,

Uð3ÞV → Uð1ÞV3 ×
Uð1ÞV1 × Uð1ÞV8

ZV3
; ð16Þ
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where the elements of Uð1ÞV1 are eiα1, of Uð1ÞV3 are eiαλ3 ,
and of Uð1ÞV8 are eiαλ8 , with λ3 ¼ diagð1;−1; 0Þ and
λ8 ¼ diagð1; 1;−2Þ= ffiffiffi

3
p

. The ZV3 denominator is because
the center of SUð3ÞV is given by f1; ei2π=31; ei4π=31g and is
contained in both Uð1ÞV1 and Uð1ÞV8. Thus, the symmetry
breaking is effectively

SUð3ÞV → Uð1ÞV3 × Uð1ÞV8 ð17Þ

and the unbroken symmetry group reads as H ¼ Uð1ÞV3 ×
½Uð1ÞV1 × Uð1ÞV8�=ZV3 because the Z2 denominator in
Eq. (13) cancels the numerator in Eq. (15).
From a broader perspective, we observe that the sym-

metry breaking patterns substantially differ for the
Majorana and Dirac cases. Thus, the resulting topological
defects crucially depend on the yet unknown neutrino
nature and offer the exciting possibility of shedding new
light onto this nature. In the following, we show that only
the Majorana neutrino case yields topological defects that
can induce a time- and space-varying neutrino mass matrix.
In the Dirac case, the defects are quickly annihilating and
thus are not expected to have any observational conse-
quences, as demonstrated in Ref. [23].
Cosmic string network.—In the Majorana case, the

original SUð3ÞL flavor symmetry of the massless left-
handed Majorana neutrinos is spontaneously broken down
to Z2 × Z2; see Eq. (10). This symmetry breaking gives rise
to global strings,

π1½SUð3Þ=ðZ2 × Z2Þ� ¼ Z2 × Z2; ð18Þ

which are analogous to the cosmic strings of broken flavor
symmetry first discussed in Refs. [35–37]. The order
parameters in the current and original flavor string scenar-
ios are similar, except that in the present case it is composite
instead of fundamental.
When investigating the cosmological evolution of the

string network, we obtain the characteristic length scale ξ of
the strings [see Eq. (18) in [23]], which reads

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λ2Λ7

Gt
a2GT

8
ν

s
¼ 1014 m

�
λ

1

��
ΛG

1 meV

�7
2

�
1

aG

�
: ð19Þ

Here, λ is the self-coupling of the scalar string field Φ, ΛG
is the infrared gravitational scale, t is the Hubble time, aG is
the scale factor of the phase transition, and Tν ∼ 0.2 meV is
the neutrino temperature. This scale sets the distance over
which the strings are straight, which is also assumed to be
the interstring separation.
When traveling around a string, the vacuum expectation

value hΦi winds continuously by the SU(3) group
transformation

hΦðθÞi ¼ ωTðθÞhΦiωðθÞ; ð20Þ

where hΦi is defined in Eq. (9). While the angle θ runs
from 0 to 2π, the path ωðθÞ interpolates between different
elements gi ∈ Z2 × Z2 [Eq. (11)], which label the different
strings [38]. For example, the string labeled by the g3
element corresponds to a path ωðθÞ that has the form

ω3ðθÞ ¼

0
B@

cos ðθ=2Þ sin ðθ=2Þ 0

− sin ðθ=2Þ cos ðθ=2Þ 0

0 0 1

1
CA; ð21Þ

which corresponds to a rotation around a third axis in
flavor space. Thus, when a neutrino passes by a string, the
mixing angles of the standard Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) neutrino mixing matrix [39,40] change
nontrivially. The PMNSmatrixUPMNS ¼ U†

eUν is a product
of two unitary matrices Ue and Uν arising from the
diagonalization of the charged lepton and neutrino mass
matrices. Keeping Ue fixed, the matrix Uν changes by
ωðθÞUν when passing by a string, resulting in UPMNS ¼
U†

eωðθÞUν. Thus, the parameters of the PMNS matrix and
the resulting strength of CP violation (given by a product of
these parameters) are time dependent and space dependent.
As discussed in Refs. [23,35–37], the strings can only
induce such observable changes of the neutrino mass matrix
if the residual Z2 × Z2 symmetry in Eq. (18) is further
broken. This breaking gives rise to DWs, as we will
demonstrate in the following section.
Topological domain walls.—In the original flavor string

models in Refs. [35–37], the residual Z2 × Z2 symmetry in
Eq. (18) needed to be further broken at high-energy scales,
ΛZ2

∼ ð10–100Þ MeV, in order to ensure sizable lepton
mass differences, me ≠ mμ. In our case, the Z2 × Z2

symmetry in Eq. (10) is explicitly broken at the low-energy
scales given by Eq. (4), such that the resulting topological
DWs have a width of

δDW ¼ 1

mϕk

¼ 8 × 1014 m

�
mτ

ml

��
1 meV
ΛG

�
2

; ð22Þ

where ml is either mτ or mμ, depending on the ϕk boson
under consideration. Thus, there are two independent
string-wall networks, in which the DWs of width
δDWðml ¼ mμÞ and δDWðml ¼ mτÞ are connected to the
two different types of Z2 strings in Eq. (18), respectively.
The energy density in these DWs is ρDW ¼ δ3DWξ.
As discussed above, the explicit Z2 × Z2 symmetry

breaking that gives rise to the DWs is the reason why
passing by a string results in observable neutrino flavor
transitions. As an example, we can consider a DW bounded
by a g3 string, described by ω3ðθÞ in Eq. (21). As we go
around the string, hΦðθÞi is rotated byωT

3 ðθÞhΦiω3ðθÞ as in
Eq. (20) and returns to itself for θ ¼ 2π. Meanwhile, the
neutrino wave function rotates by ω3ðθÞ⟶

θ¼2π
diagðg3; 1Þ,

which leads to an overall minus sign of ν1 and ν2. Such a
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DW can arise through the vacuum expectation value (VEV)
hΦi ∝ ð1; 0; 0Þ, for which g3hΦi ≠ hΦi with g3 given by
Eq. (11). Thus, the neutrinos change their flavor when
passing by a string or through a DW.
Experimental predictions.—In principle, both the DWs

and the strings that form in the Majorana neutrino case can
induce time- and space-dependent effects on the neutrino
mass matrix. However, the DWeffects are negligibly small,
as they only change the neutrino mass splittings by
Oðδ−1DWÞ≲ 2 × 10−21 eV; see Eq. (4). While the string
effects are larger, they do not change the neutrino mass
splittings but only the mixing angles, as explained below
Eq. (21). While a neutrino travels from one string to
another, the mixing angles continuously and randomly
change by Oð1Þ, which is the leading observational effect
of the topological defects. As a secondary effect, the strings
induce different mixing angles at Sun and Earth, but this
effect is negligibly small because the Earth-Sun distance is
smaller than the interstring separation.
The time-dependent change of the neutrino mixing

angles can be observable in future neutrino experiments
and already in existing neutrino data. Similar experimental
signatures have been previously discussed in the context of
dark-matter-neutrino interactions, which can give rise to
time-dependent oscillatory contributions to the neutrino
masses and mixing angles [41–45]. However, the predic-
tions of our scenario fundamentally differ from the pre-
viously considered ones, because only the mixing angles
are time dependent. Interestingly, current data allow for an
Oð10%Þ variation in the neutrino parameters over the last
ten years [21,46].
To determine the timescales over which the neutrino

mixing angles change, we need to compare the interstring
separation scale ξ in Eq. (19) to the DW width δDW in
Eq. (22). Here, we can distinguish two scenarios: For
ξ > δDW, the DWs would dominate the evolution of the
string-wall network, and the network would dilute rapidly,
similar to the axionic and nontopological DWs treated in
Ref. [23], with Oð10Þ DWs remaining per Hubble volume.
In this case, an observation of variations in the mixing
angles would be very unlikely. We thus focus only on the
case ξ < δDW in the following.
Next, we need to compare the distance scale ξ and the

timescale t ¼ ξ=v to the corresponding scales of the
neutrino experiments under consideration. For example,
experiments like Daya Bay [47] measured sin2ð2θ13Þ ¼
0.0856� 0.0029 taking data for t ∼ 6 years. During this
time, the solar system moved a distance d ¼ vt ¼ 4 ×
1013 m through the frozen string and DW background,
where v ∼ 230 km=s. Interestingly, this distance is similar
to the interstring separation ξ in Eq. (19) and therefore
similar to the distance over which the neutrino mixing
angles change by Oð1Þ. This implies that current data
already exclude the existence of the smallest possible

interstring separation ξ < δDW ¼ 8 × 108 m for ml ¼ mτ

and ΛG ¼ 1 eV. In this case, the Solar System would only
need t ¼ d=v ∼ 1 h to pass by a string, which would result
in rapid variations of the neutrino mixing angles. While this
specific case of ξ < δDW and ΛG ¼ 1 eV is ruled out, both
the cases of ξ > δDW and ξ < δDW with ΛG ≲ 0.2 meV are
still viable. In the latter case, the most constraining
parameter is the smallest mixing angle sin2ð2θ13Þ ¼
0.0856� 0.0029 [47], which could exhibit a time-depen-
dent change Δ13 within the experimental uncertainty,
Δ13 ¼ sin2ð2 × 2πvt=δDWÞ≲ 2 × 0.0029, where t ∼ 6 y
and δDW is given by Eq. (22). This estimate strongly
motivates the search for time-dependent changes in existing
and future neutrino oscillation data, with a particular focus
on the smallest mixing angle θ13.
Conclusions.—We studied the formation and evolution

of soft topological defects from a late cosmological phase
transition predicted by the neutrino mass model in
Ref. [9]. In the model, neutrino flavor symmetry gets
spontaneously broken by a composite Higgs-like field,
which is neutrino bilinear and thus does not require any
new particles. We demonstrated that the Dirac case gives
rise to neutrino skyrmions, global monopoles, and a
hybrid string-wall network, which all quickly annihilate
into dark radiation. More importantly, the Majorana case
predicts the formation of strings and topological DWs that
are similar to the strings and DWs of broken flavor
symmetry first discussed in Refs. [35–37]. This string-
wall network induces a time- and space-dependent varia-
tion of the neutrino mixing angles, which could be
observable in future neutrino experiments and already
in existing neutrino data. The detection of this smoking
gun feature would indicate that neutrinos are Majorana
particles and thus could solve one of the fundamental open
questions of neutrino physics.
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