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During the final stages of black hole evaporation, ultraviolet deviations from general relativity eventually
become dramatic, potentially affecting the end state. We explore this problem by performing nonlinear
simulations of wave packets in Einstein-dilaton-Gauss-Bonnet gravity, the only gravity theory with
quadratic curvature terms which can be studied at a fully nonperturbative level. Black holes in this theory
have a minimum mass but also a nonvanishing temperature. This poses a puzzle concerning the final fate of
Hawking evaporation in the presence of high-curvature nonperturbative effects. By simulating the mass
loss induced by evaporation at the classical level using an auxiliary phantom field, we study the nonlinear
evolution of black holes past the minimum mass. We observe a runaway shrink of the horizon (a
nonperturbative effect forbidden in general relativity) which eventually unveils a high-curvature elliptic
region. While this might hint to the formation of a naked singularity (and hence to a violation of the weak
cosmic censorship) or of a pathological spacetime region, a different numerical formulation of the initial-
value problem in this theory might be required to rule out other possibilities, including the transition from
the critical black hole to a stable horizonless remnant. Our Letter is relevant in the context of the
information-loss paradox, dark-matter remnants, and for constraints on microscopic primordial black holes.
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Introduction.—It is widely believed that some of the
deepest theoretical problems of general relativity (GR)—
such as its nonrenormalizability and the unavoidable
formation of singularities [1,2]—can be resolved by some
ultraviolet completion of which GR is the low-energy
approximation. Ultraviolet deviations from GR are
expected to become important at the Planck scale, although
the huge hierarchy between the latter and the curvature
regimes probed so far does not exclude that the funda-
mental ultraviolet energy scale is smaller. If the beyond-GR
scale is (nearly) Planckian it would be virtually impossible
to probe it in the foreseeable future (but see Ref. [3]).
Nevertheless, there is a well-established semiclassical
process that can in principle provide a portal to such an
energy scale, namely, black-hole (BH) Hawking evapora-
tion [4]. The fact that a static BH with mass MBH emits
radiation nearly as a blackbody with temperature TH ¼
ðℏc3=8πGkBMBHÞ (where c, G, ℏ, and kB are all funda-
mental constants that we set to unit henceforth) is at the root
of the infamous BH information loss paradox [4–6], and
suggests that BH evaporation (and the physics at the high-
curvature scales where evaporation is relevant) is a portal
connecting gravity, quantum theory, relativity, and thermo-
dynamics [7,8].
During Hawking evaporation, the BH gradually shrinks

probing near-horizon regions of ever growing curvature. It
is therefore inevitable that ultraviolet deviations from GR
eventually become dramatic during this process. Studying

the evolution of BH Hawking evaporation beyond GR
within an effective field theory approach is of limited
interest, because deviations from the standard GR picture
ought to be perturbative, while the most interesting effects
are expected to occur in a nonperturbative regime.
However, studying the nonlinear dynamics of gravity in
the high-curvature regime beyond GR at the nonperturba-
tive level is very challenging [9].
In this Letter and in a companion paper [10], we report

on a substantial step forward in this direction. By making
use of recent progress [11–17] in evolving dynamical
spacetimes in nonperturbative quadratic gravity, we shall
investigate the fate of mass evaporation in the presence of
nonperturbative high-curvature deviations from GR.
Our starting point is Einstein-scalar-Gauss-Bonnet

gravity [18],

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p fR − ð∇ϕÞ2 þ 2F½ϕ�Gg þ Sm; ð1Þ

where R is the scalar curvature, ϕ is the dilatonic field,
G ¼ 1

4
ϵμναβϵρσλωR

μν
ρσR

αβ
λω is the Gauss-Bonnet invariant,

F½ϕ� ∝ λ is a function that depends on the fundamental
coupling constant λ, and Sm is the matter action. Curvature-
squared corrections to GR are ubiquitous in both bosonic
and heterotic string theories [19], but (1) is the only
quadratic gravity theory with second-order field equations,
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thus avoiding the Ostrograski’s instability [20] even when
considered at the nonperturbative level.
Studying BH evaporation in this theory is particularly

interesting also for another reason: due to nonperturbative
effects, in this theory BHs only exist above a minimum-
mass solution [18,21–23], MBH ≥ Mcrit ∝

ffiffiffi
λ

p
, which

depends on the coupling function. This is a striking
difference with respect to GR, where the BH mass is an
unconstrained free parameter. Remarkably, the Hawking
temperature [21,22] and the graybody factor of the mini-
mum mass solutions are finite [10,24]. This implies that in
this theory a BH loses its mass at the rate [25]

dMBH

dt
¼ −

1

2π

X
l;m

Z
dω

ωGlmðωÞ
eω=TH � 1

; ð2Þ

where GlmðωÞ is the graybody factor for the emission of a
mode with frequency ω and ðl; mÞ angular dependence, and
the plus or minus sign refers to the emission of fermions or
bosons, respectively. This mass loss occurs also near and at
the minimum mass, which is inevitably reached during the
evaporation, no matter how small the fundamental coupling
λ is. A natural question then arises: What is the final fate of
Hawking evaporation in this regime [21,26]?
For the first time, we have explored this problem by

performing extensive nonlinear evolutions of BHs in the
theory (1) in spherical symmetry. Here we report the salient
features, a more detailed analysis is presented in [10].
Numerical procedure.—Hawking evaporation makes the

BH mass decrease in time, a process that is generically not
allowed for reasonable classical interactions (excluding
superradiance [27] which anyway does not occur in our
setup). To mimic mass loss due to Hawking evaporation at
the classical level, we introduce a minimally coupled,
massless “phantom” scalar field ξ whose kinetic term
has the wrong sign relative to our conventions, thus
violating the energy conditions. The matter action in (1)
then reads

Sm ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ð∇ξÞ2: ð3Þ

We simulate the spherical collapse of wave packets of ϕ
and ξ on an initially static dilatonic BH in this theory using
horizon penetrating coordinates to monitor also the BH
interior. For this purpose we adopt a setup similar to the one
proposed in Ref. [11] for evolving BH spacetimes in shift-
symmetric GB gravity using Painlevé-Gullstrand-like coor-
dinates. We write the line element as

ds2 ¼ −α2dt2 þ ½R0ðrÞdrþ αζdt�2 þ RðrÞ2dΩ2; ð4Þ

where the lapse α and the function ζ depend on ðr; tÞ, and
RðrÞ is the areal radius, defined in order to achieve better
resolution in high-curvature regions while keeping a

uniform grid for the coordinate radius r [10]. After intro-
ducing the auxiliary variables Q ¼ ∂rϕ and Θ ¼ ∂rξ,
and the conjugate momenta of the scalar fields, P ¼
ð1=αÞ∂tϕ − ½ζQ=R0ðrÞ� and Π ¼ ð1=αÞ∂tξ − ½ζΘ=R0ðrÞ�,
we obtain a nonlinear system of seven evolution equations
for ϕ, Q, P, ξ, Θ, Π, ζ, and two constraints for α and ζ. We
evolve this system using the method of lines. We compute
the spatial derivatives with the fourth-order accurate cen-
tered finite-difference method, and perform the time
integration with the fourth-order accurate Runge-Kutta
method. At each integration step we update the profile
of α by integrating its constraint with a combination of the
Simpson’s rules. We add a fifth order Kreiss-Oliger term in
the right-hand side of the evolution equations [28] to
stabilize the algorithm against high-frequency modes aris-
ing from the inner region, and using a weighting function
that restricts the dissipative action to the central region.
A noteworthy aspect of this theory is that, at least in this

formulation, there might appear regions in which the
system is not hyperbolic [11–13]. We therefore implement
an excision strategy to remove the elliptic regions, which
are initially confined within the BH horizon. In particular,
at each time step we set the excision boundary as the
outermost radius where the characteristic velocities have an
imaginary part [10,13]. We integrate the system only in the
hyperbolic region, and thus, by construction, the excised
region can never shrink during the evolution. We stop the
simulations if the excision boundary crosses the apparent
horizon, since in this case the elliptic region might be
causally connected to the BH exterior and the evolution can
be pathological [29].
We prescribe initial data by numerically solving the field

equations at t ¼ 0. For any coupling function such that
F0½ϕ ¼ 0� ≠ 0, BH solutions in this theory are different
from their GR counterpart and feature a secondary [30,31]
scalar hair. We first construct a numerical solution for the
dilatonic BH by fixing the horizon radius and coupling
constant and implementing a shooting procedure [18,23].
We fix the units such that the horizon areal radius of the
initial BH is Rhðt ¼ 0Þ ¼ 2, which corresponds to setting
the initial BH mass to unity in the GR limit. Then, we add
some ingoing Gaussian wave packets for the dilaton field,
with amplitude

δϕ ¼ A0;ϕ

R
exp

�
−
ðR − R0;ϕÞ2

σ2ϕ

�
; ð5Þ

and similarly for the phantom field δξ, where A0;ϕ, R0;ϕ,
and σϕ (and their phantom-field analog A0;ξ, R0;ξ, and σξ)
are free parameters. Finally, we compute the initial profiles
of α and ζ through a numerical integration of the two
constraints. More details on the evolution scheme and code
testing are provided in [10].
Results.—For concreteness, we focus on the relevant

case of dilatonic BHs in Einstein-dilaton-Gauss-Bonnet
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(EDGB) gravity [18] with F½ϕ� ¼ λe−γϕ, setting γ ¼ 4
(different values of γ ≳ 1 give the same qualitative picture
[10]). Because of nonperturbative effects, in this theory
there is a critical value of the mass below which no BH
solutions exist. The minimum-mass BH divides two
branches of solutions with the same mass and different
areal radii, see inset of Fig. 1. Similarly to the standard case
of compact stars in GR [32], one branch is linearly stable
and the other (with lower radii) is linearly unstable [33].
While inside any of these BH solutions there is a curvature
singularity [22], for the solution at the end of the unstable
branch such singularity coincides with the horizon and
becomes naked (see, e.g., [34,35]). However, the singular
solution does not coincide with the minimum-mass solution
[21,24,36,37]. Therefore, the latter is regular at and outside
the horizon, just as in the GR case, and can be treated
(semi)classically if its length scale is sufficiently far from
being Planckian. The stability analysis just reported has
been derived within linear-perturbation theory [33]. Within
our framework we can now explore the full nonlinear
dynamics on both the stable and unstable branches.
We first start by simulating wave packets of the dilaton on

initially static BHs in the lower branch.We consider the cou-
plings λ¼f1.554;1.556;1.558;1.56g×10−2, which corres-
pond to an initial BH mass such that MBH=Mcrit − 1≈
f0.6; 2.4; 6.4; 15.9g × 10−4, whereMcrit ≈ 8.244

ffiffiffi
λ

p
for this

specific coupling function. The initial dilaton perturbation
δϕ is defined by

A0;ϕ ¼ 0.01; R0;ϕ ¼ 15; σϕ ¼ 2.5: ð6Þ

We set A0;ξ ¼ 0 so that the phantom field vanishes every-
where and the theory reduces to the standard EDGB gravity.
We place the outer boundary atR∞ ¼ 2850, and set the final
time of integration to T ¼ 2800. The grid step is Δr ¼ 0.02
with a Courant-Friedrichs-Lewy factor CFL ¼ 0.025.
Figure 1 shows, with purple arrows, the evolution in the

Rh-MMS plane (where MMS is the Misner-Sharp mass
function computed at spatial infinity [11]) for this set of
simulations. The purple points represent the initial con-
figurations, which are close to the static BH solutions (blue
solid curve). Although not visible on the scale of the plot, at
the beginning of the simulations the total mass is slightly
larger than the corresponding isolated BH mass, since the
perturbation δϕ adds a positive contribution to MMS. As is
clear from Fig. 1, BHs in the lower branch are unstable and
migrate towards a final stable configuration in the upper
branch. The blue points in Fig. 1 represent the end states of
the numerical integration; the fact that they lie on top of the
blue curve is a consistency check for our simulations. These
results numerically prove the instability of the lower branch
and the stability of the upper branch at the fully nonlinear
level.
We now move to investigate the dynamics of dilatonic

BHs under a mass loss due to absorption of the phantom
field. Figure 2 shows the Hawking temperature and gray-
body factor of a dilatonic BH in EDGB gravity, computed
in detail in Ref. [10] (see also [22,38]). Overall, they are
quantitatively very similar to their GR counterpart even for
large coupling constants, suggesting that the rate of mass
loss due to Hawking emission in EDGB gravity is similar to
the GR case. In fact, near the minimum mass solution mass
loss occurs ≈10% faster than in GR.
In order to mimic Hawking evaporation we simulate

wave packets of the phantom field on initially static
dilatonic BHs in the upper branch, in the absence of
perturbations of the dilaton (A0;ϕ ¼ 0). We set the para-
meters of δξ to

A0;ξ ¼ 0.01; R0;ξ ¼ 15; σξ ¼ 2.5; ð7Þ

and we consider five different coupling constants: λ ¼
f1.543; 1.545; 1.547; 1.549; 1.551g × 10−2. In the latter
case the total Misner-Sharp mass of the spacetime is below
the critical one, so after the absorption of the phantom wave
packet the BH becomes subcritical. We use the same grid
resolution as in the previous simulations. Other choices of
the initial data and setups, including one with an ingoing
phantom perturbation and an outgoing standard field
perturbation both starting near the horizon (which would
more closely mimic the production of a Hawking quantum
pair), give the same dynamics as presented below, see
Ref. [10] for details.
Note that the role of the phantom field is solely to

dynamically reduce the BH mass, mimicking the effect of
Hawking evaporation at the classical level. Furthermore, its

FIG. 1. Evolution of dilatonic BHs in EDGB gravity in the
Rh-MMS plane, where Rh is the horizon areal radius and MMS is
the Misner-Sharp mass at infinity. The blue solid curve represents
a family of static BHs which features a minimum mass separating
two branches of solutions. Purple arrows correspond to the
dynamics of a dilaton perturbation on initially static BHs in
the lower (unstable) branch, while yellow arrows correspond to
the dynamics of a phantom field on BH configurations in the
upper (stable) branch.
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evolution is not pathological in spherical symmetry, since
absence of gravitational-wave emission prevents runaway
instability from free phantom fields. We have checked this
explicitly in the GR limit [10]. Indeed, as shown by the
yellow arrows in Fig. 1, when the initial BH is sufficiently
far from the critical mass, the initial phantom perturbation
is simply absorbed by the horizon and the BH reaches a
stable stationary configuration with slightly smaller mass,
as expected. The red squares in Fig. 1 represent the initial
configurations, which have a slightly smaller mass than in
the isolated BH case (empty squares, connected to the red
ones by horizontal dotted lines) since in this case the
phantom perturbation δξ gives a negative contribution to
MMS. Overall, we observe that when the initial configu-
ration is supercritical [MMSðt ¼ 0Þ > Mcrit] the system
reaches a stable configuration in the upper branch upon
absorbing the phantom field. On the other hand, for
subcritical masses [MMSðt ¼ 0Þ < Mcrit], after the BH
has initially absorbed the phantom perturbation, on a much
longer time scale the apparent horizon starts shrinking and
the excision boundary starts expanding due to the intrinsic
(classical) dynamics of the theory. The evolution of these
two radii becomes faster as the simulations proceeds, until
they eventually cross each other and the simulation is
stopped when an elliptic region emerges from the horizon.
Naked singularity formation in EDGB gravity.—We

repeated the simulation in the MMSðt ¼ 0Þ < Mcrit case
increasing the resolution (Δr ¼ 0.0025), in order to per-
form a more accurate analysis. In particular, we wish to
understand if the expansion of the elliptic region is also
related to an increase of the location of the curvature
singularity therein, and if the rapid decrease of the apparent

horizon radius is leading to an exposure of the singularity
and a violation of the weak cosmic censorship conjecture
[2,39]. For this purpose we computed the profile of the
Ricci scalar R at each time step, see Fig. 3. The black area
represents the excised region, and the white dashed curve is
the apparent horizon. The thin gray area contains the first
three grid points outside the excision radius where, con-
servatively, we did not computeR due to the change in the
differentiation and dissipation schemes.
By the time the horizon almost crosses the excision, the

Ricci scalar at the apparent horizon has grown by almost 2
orders of magnitude compared to its initial value. In this
regime the curvature converges well for different resolu-
tions until t ¼ 2569.0 [10]. This suggests that a large
curvature region located just across the excision is emerg-
ing out of the apparent horizon. We have indication that the
curvature loses convergence only in the very last time steps
before the simulation stops (approximately at t ¼ 2569.6).
Furthermore, by tracing null rays backwards in time during
the last stages of the simulations [10], we have checked that
the event horizon follows the same behavior of the apparent
horizon, confirming the general picture. Unfortunately, the
curvature singularity (which exists also at t ¼ 0 inside
the BH, just as in the GR case) is always located inside the
excision boundary, so with this formalism we cannot access
the region where R actually diverges. Nevertheless, the
level curves in Fig. 3 show that the region of high curvature

FIG. 2. Hawking temperature of a dilatonic BH in EDGB
gravity as a function of its mass. The inset shows the graybody
factor of the minimum-mass BH solution for the emission of
massless scalar particles (blue) and photons (orange) in their
lowest angular modes (l ¼ 0, 1, respectively). The dotted lines
correspond to the graybody factor of a Schwarzschild BH with
the same mass. See Ref. [10] for details.

FIG. 3. The Ricci curvature scalarR as a function of spacetime
for a BH absorbing a negative-energy wave packet near the
minimum mass solution in EDGB gravity. The black region
denotes the excision in our simulation, the thin gray area denotes
the few grid points near the excision where we avoid computing
the curvature, whereas the white dashed curve shows the shrink of
the apparent horizon. The inset shows the final stages of the
simulation when the apparent horizon crosses the excision,
unveiling a high-curvature region where the system of partial
differential equations becomes elliptic.
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expands following the behavior of the excision boundary,
in particular the high-curvature region quickly moves
outwards in the last stages of the simulations. This suggests
that the radius of the curvature singularity (that for the
minimum-mass solution is initially already close to the
outer boundary of the elliptic region [10]) expands tracking
the evolution of the elliptic boundary, thus supporting the
hypothesis of the formation of a naked singularity.
Discussion.—Whether or not a naked singularity forms

as the outcome of mass loss of a minimum-mass BH in
EDGB gravity, we can conclude that a high-curvature
elliptic region does emerge out of the apparent horizon,
which is a potential major drawback for the theory.
However, the appearance of the naked elliptic region
depends on the gauge choice [12,13,40–42] and we cannot
exclude that a different evolution scheme could cure this
pathology [10] (see Ref. [43] for a gauge-independent
characterization of elliptic regions in spherical symmetry).
In the companion paper [10], we show that the minimum-
mass BH solution actually coexists in the phase space of the
theory with a regular wormhole [44]. This intriguing
feature might suggest the possibility of a transition from
this critical BH solution to a regular horizonless remnant,
which cannot evaporate any further (see also [26,45] for a
model in which Hawking evaporation is halted). This
would require a change of topology which might be
connected to the limitations encountered by our evolution
scheme.
Thus, while the question posed in the title remains

unanswered, we argue that investigations in this direction
would be very valuable. Given the absence of BH solutions
with MBH < Mcrit, Hawking evaporation in EDGB gravity
is bound to either violate the weak cosmic censorship
(implying an inevitable breakdown of the theory and the
need of a full quantum gravity completion) or produce
(potentially classical) horizonless remnants. Both options
are extremely intriguing and deserve further investigation.
In particular, microscopic horizonless remnants evade all
the constraints on light BHs [46] arising from Hawking
evaporation and could form the entirety of the dark matter.
Furthermore, the expectation that primordial BHs formed
in the early universe with masses below MBH ∼ 1015 g
should be completely evaporated by the present epoch and
cannot therefore contribute to the dark matter is based on
the assumption that GR is valid all the way down to full
evaporation, way beyond the curvature scales where the
theory has been tested. In the final stage of the evaporation,
the ultraviolet terms explored here become dominant. Our
setup might provide a concrete first-principle model to
establish whether the information allegedly lost [4–6] at
the end of the evaporation can be stored in stable
remnants [47].
Finally, notice that the EDGB length scale

ffiffiffi
λ

p
might be

much larger than the Planck length. Therefore, at variance
with GR, the puzzle of Hawking evaporation in this theory

might be resolvable without invoking full-fledged quan-
tum-gravity effects. In this context, an important point that
we intend to explore in the future is the impact of higher-
order terms in the action, which are natural in the ultraviolet
regime, on the nonperturbative effects and solutions dis-
cussed here and in [10].
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