
Ternary Unitary Quantum Lattice Models and Circuits in 2 + 1 Dimensions

Richard M. Milbradt ,1,* Lisa Scheller ,1,† Christopher Aßmus,1,‡ and Christian B. Mendl 1,2,§

1Technical University of Munich, School of CIT, Department of Informatics, Boltzmannstraße 3, 85748 Garching, Germany
2Technical University of Munich, Institute for Advanced Study, Lichtenbergstraße 2a, 85748 Garching, Germany

(Received 1 July 2022; accepted 27 January 2023; published 3 March 2023)

We extend the concept of dual unitary quantum gates introduced in Phys. Rev. Lett. 123, 210601 (2019)
to quantum lattice models in 2þ 1 dimensions, by introducing and studying ternary unitary four-particle
gates, which are unitary in time and both spatial dimensions. When used as building blocks of lattice
models with periodic boundary conditions in time and space (corresponding to infinite temperature states),
dynamical correlation functions exhibit a light ray structure. We also generalize solvable matrix product
states introduced in Phys. Rev. B 101, 094304 (2020) to two spatial dimensions with cylindrical boundary
conditions, by showing that the analogous solvable projected entangled pair states can be identified with
matrix product unitaries. In the resulting tensor network for evaluating equal-time correlation functions, the
bulk ternary unitary gates cancel out. We delineate and implement a numerical algorithm for computing
such correlations by contracting the remaining tensors.
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Introduction.—Dual unitary gates are two-particle gates,
some of them chaotic [1], that are unitary both in time and
space direction. They form the building blocks of a class of
quantum lattice models in 1þ 1 dimensions [2] for which
an exact evaluation of different physical quantities such as
correlation functions is feasible [2–6]. Since their intro-
duction in [2], dual unitaries have been used to explore
different aspects of chaotic many-body systems [6–20] and
were realized experimentally [21]. Furthermore, the under-
lying concept has been extended to tensors with six [22,23]
or more legs [24] and quantum channels [25]. Here we
generalize the framework to two spatial dimensions, which
are known for phenomena not existent in one dimension,
like anyons [26,27]. Specifically, we construct and analyze
four-particle gates on a square lattice, which are unitary in
time and along both spatial dimensions, denoted “ternary
unitary” gates. We will show that corresponding quantum
lattice models exhibit light ray correlation functions,
pictorially along the edges of a pyramid. We also generalize
corresponding “solvable” quantum states [3] to two spatial
dimensions, assuming cylindrical boundary conditions. In
analogy to matrix product states (MPS) in Ref. [3], we
employ projected entangled pair states (PEPS) [28,29] as
ansatz for the generalization. We will show that these
solvable PEPS can be identified with concatenations of
matrix product unitaries (MPU) [30,31], a special class of
matrix product operators (MPO) [32,33].
Ternary unitary gates.—We examine a subset of

four-particle gates U ∈ EndðH⊗4Þ, where H is the
d-dimensional local Hilbert space, usually chosen as
H ¼ Cd, with d ¼ 2 for qubits (or spin-1

2
particles). The

particles are geometrically arranged as a 2 × 2 plaquette.

In common tensor network language, U is an 8-tensor,
drawn as a cube:

ð1Þ

The legs labeled 5, 6, 7, 8 are the input dimensions, and 1,
2, 3, 4 are the output dimensions (conforming with the
convention that the leading index of a matrix corresponds to
its output). In this picture, the adjoint U† is a complex-
conjugated copy of U mirrored at the spatial x1 − x2 plane.
We can now define new matrix products ∘1 and ∘2,

interpreted as multiplication along the x1- and x2 direction
rather than along the t direction. This means contracting
different legs compared to the usual matrix product. We
define a ternary unitary operator U as an operator that is
unitary with respect to the usual matrix product and the two
products ∘1 and ∘2. Visually, we represent the usual unitary
property as

ð2Þ

and the unitary condition in the x1 direction as [34]
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ð3Þ

An analogous depiction can be found for the x2 direction.
This definition as cubes is based on the closing thoughts in
[2]. A prototypical ternary unitary gate is the generalization
of the SWAP gate, denoted “t-SWAP,” swapping the states
on opposite sites of a plaquette:

ð4Þ

Constructing ternary unitary gates.—We leave a char-
acterization and encompassing parametrization of ternary
unitaries for future work. Here we note that one can
construct classes of ternary unitaries from dual unitaries,
by combining (possibly different) dual unitary gates,
visualized in dark red in the following diagram:

ð5Þ

For example, if we choose all dual unitaries as SWAP gates,
both constructions yield the t-SWAP gate. It is straightfor-
ward to verify that (5) are indeed ternary unitary. While it is
a challenge to find ternary unitary gates directly, dual
unitary gates were explicitly parametrized in the qubit case
[2] and nongeneral constructions are known for higher
dimensions [35]. Notably, the first construction consists of
nearest-neighbor gates. Such gates are commonly used in
quantum computing to construct other gates [36,37]. An
important property of our constructions is that the opposite
corners of the cube are connected via interactions.
Physical setting.—We consider a quantum system on a

two-dimensional square lattice, where each site is associ-
ated with a local Hilbert space H ¼ Cd. To simplify the
discussion, we assume an L × L lattice with periodic
boundary conditions, where L is even. Each site is indexed
by coordinates ði; jÞ ∈ ðZ=LÞ2. For conciseness, we denote
a 2 × 2 plaquette anchored at a site x ¼ ðx1; x2Þ as pðxÞ ¼
fðx1; x2Þ; ðx1 þ 1; x2Þ; ðx1; x2 þ 1Þ; ðx1 þ 1; x2 þ 1Þg. Now
define the two operators

Uee ¼ ⊗
ði;jÞ∈f0;…;L

2
−1g2

Upð2i;2jÞ; ð6Þ

Uoo ¼ ⊗
ði;jÞ∈f0;…;L

2
−1g2

Upð2iþ1;2jþ1Þ; ð7Þ

where US is the ternary unitary U acting on sites S. A
motivation for the choice of plaquettes is given in the
Appendix, and it can be argued that this pattern is the 2D
equivalent of the time evolution used in one dimension
[34]. We remark that the following derivations are straight-
forwardly generalizable for the case of differing ternary
gates at each plaquette and time step. In particular, the
“light ray” correlation structure (see below) persists. A
discrete time step, motivated by trotterized time evolution,
is then U ¼ UooUee. The time dependence (in the
Heisenberg picture) of a local operator ax acting on lattice
site x is defined as

axðtÞ ¼ U−taxUt; ð8Þ

where t is an integer.
Dynamic correlations.—Based on these definitions, we

introduce dynamic correlation functions:

Dαβðx; y; tÞ ¼ 1

dL
2 Tr½aαxU−taβyUt�; ð9Þ

with t ∈ Z and faαxgd2−1α¼0 a basis of local operators on H.
We can use the same trick as in the one-dimensional case
[2]: Choose a0x ¼ 1 and all operators to be Hilbert-Schmidt
orthonormal, i.e., Tr½aαxaβx� ¼ dδαβ. Thus all nonidentity
operators have trace 0. As immediate consequence
D0;0ðx; y; tÞ ¼ 1 for all x, y, and t. We find [34] the only
remaining cases of nonzero correlations require that aαx and
aβy are connected along a cross-diagonal light ray implying
jx1 − y1j ¼ jx2 − y2j ¼ 2t. The tensor diagram then sim-
plifies to the following form (illustrated for t ¼ 2):

ð10Þ
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The open hooked legs are contracted too, but not fully
drawn for visual clarity. We can condense (10) further by
defining the operator

MzðaÞ ¼
1

d3
Trpnz̄½U†azU�; ð11Þ

where p ¼ pð0Þ, z ∈ p indexes one of the sites, and
z̄ ¼ ð1; 1Þ − z. We remark that the maps Mz are
d2-unistochastic quantum channels [38] and contracting
(by an analogous argumentation as in [2]). Finally, we may
express the correlation function (in the case of x and y
connected by a light ray) as

Dαβðx; y; tÞ ¼ 1

d
Tr½M2t

y mod 2ðaβÞaα�; ð12Þ

where ðy mod 2Þ is understood entrywise. Otherwise,
Dαβðx; y; tÞ ¼ δa;b;0. Equation (12) is similar to the one-
dimensional case [2] and can be computed efficiently with
respect to t [34]. Further information on the use of these
maps is provided in the Appendix.
Solvable PEPS.—We generalize the concept of solvable

states introduced in [3] to two dimensions. The goal is to
characterize solvable projected entangled pair states
(sPEPS) as initial states, such that a semi-analytic calcu-
lation of (equal-time) correlation functions is feasible.
Therefore, we consider a scenario that renders the theo-
retical results in [3] applicable: an L1 × L2 square lattice
(both L1 and L2 even) with cylindrical geometry, i.e.,
arbitrary boundary conditions in the x1 direction and
periodic boundary conditions in the x2 direction, and
taking the thermodynamic limit L1; L2 → ∞. For the
following, a local PEPS tensor Λ represents two neighbor-
ing sites in the x1 direction, endowing it with two physical
legs:

ð13Þ

here μ (η) denote the virtual bonds parallel to the x1ðx2Þ
direction and have bond dimension χ1 (χ2). A uniform
PEPS corresponding to Λ is shift invariant by two sites in
the x1 direction and one site in the x2 direction; in short,
shift-invariant. We denote the PEPS by jΨL1L2

½Λ�i.
By combining one physical leg with one μ leg each, we

can reinterpret Λ as a MPO:

ð14Þ

where the η legs are the virtual bonds and the other legs
correspond to “physical” dimensions. Further, we define

ΛL2 as the contraction of L2-many Λ along their ν legs with
periodic boundary and call it blocking of local tensors [30].
Now we define two conditions for sPEPS that can be
justified by the conditions for solvable MPS [3,34]. A shift-
invariant normalized PEPS jΨL1;L2

½Λ̃�i is called solvable if
(1) The transfer operator of Λ̃L2 , defined as the contraction
of all physical legs of Λ̃L2 with ðΛ̃L2Þ�, has a unique largest
eigenvalue λ ¼ 1 with an algebraic multiplicity of 1.
(2) There exists a nonzero tensor S ∈ CdL2 × CdL2 such that

ð15Þ

where the darker local tensors are Λ̃�.
We need two additional definitions to state the following

theorem. A matrix product unitary is a MPO such that ΛL2

is unitary for all L2 ∈ N1 [30]. Note that MPUs can be
characterized in different ways [30,31]. Secondly, we call
two sets of states fjΨL1L2

igL1;L2
, fjΦL1L2

igL1;L2
defined on

increasing lattice sizes L1 × L2 equivalent (in the thermo-
dynamic limit) if

lim
L2→∞

lim
L1→∞

hΨL1L2
jΩRjΨL1L2

i¼ lim
L2→∞

lim
L1→∞

hΦL1L2
jΩRjΦL1L2

i

ð16Þ

for all operators ΩR, where R ⊂ Z2 is bounded. Now we
can state the main result of this section:
Theorem 1.—Classification of solvable PEPS states. On

a square lattice L1 × L2 with cylindrical boundary con-
ditions a solvable PEPS jΨL1L2

½Λ̃�i as defined above is
equivalent in the thermodynamic limit to some shift-
invariant PEPS jΨL1L2

½Λ�i such that the associated MPO
(14) is an MPU up to a scalar factor.
A detailed proof can be found in the Supplemental

Material [34]. Essentially, the theorem is a consequence of
Theorem 1 in [3] after reducing the two-dimensional lattice
geometry to one dimension by grouping all tensors in the x2
direction at given x1 and t. In particular, the local Hilbert
space dimension is then dL2 .
As a consequence of this theorem, we can restrict the

following discussion to PEPS whose local tensors generate
a MPU. We study their behavior under the time evolution U
and choose the position of our local tensors Λ such that the
first four-particle ternary unitary gates act on plaquettes
where each is part of a different Λ, cf. Fig. 1. The
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expectation value dynamics of a local operator ΩR in the
thermodynamic limit is

EðΩR; tÞ ¼ lim
L2→∞

lim
L1→∞

hΨL1L2
jU−tΩRUtjΨL1L2

i; ð17Þ

where the explicit dependence on Λ was left out. A
graphical proof shows that for ΩR ¼ Ωfxg a single-site
operator EðΩfxg; tÞ ¼ Tr½ΩR� for all t. To investigate
further we choose ΩR ¼ Ωfx;yg to be a two-site operator

composed of two single-site operators aαx; a
β
y in the same set

faαgd2−1α¼0 as before. An immediate consequence of the state
normalization is Eða0x; a0y; tÞ ¼ 1. So assume α, β ≠ 0.
Define r ¼ x − y and

Δ ¼ Δðx; yÞ ¼ min
x̃∈px
ỹ∈py

jx̃2 − ỹ2j; ð18Þ

where pz ≔ pð2⌈ðz1=2Þ⌉ − 1; 2⌈ðz2=2Þ⌉ − 1Þ is a plaquette
of four sites. For r1, r2 ≥ 0 we find that Eq. (17), in
accordance with [3], is nonzero only if r1 is sufficiently
large and r2 small enough. Since the proof and the exact
solution are very technical and not insightful on their own,
they are left to [34]. Note that both in the derivation of the
exact solution and for the numerics we assumed the local
tensor to be simple [30,34]. The nonzero form can be
summarized as the two-single site operators sandwiched in
between a big operator and its adjoint. The big operator is a
finite number of MPU rows along the x2 direction and
ternary unitaries applied on each end in the x1 direction on
sites forming the face of the light cone of the corresponding
operator on top of the cone. Every operator is connected to
its adjoint by the identity or a single-site operator. Overall a
tube of nontrivial operators is formed. The final result for
Δ ¼ 0, r1 ¼ 7, and t ¼ 1 in the form of a tensor network
diagram is given in Fig. 2.
Numerical algorithm and simulations.—The computa-

tion of the dynamical time-correlation (12) is straight-
forward, and the specifics of the algorithmic tensor network

contraction visualized in Fig. 2 are left to the Appendix.
Fig. 3 visualizes the resulting equal-time correlation func-
tions for t ¼ 1. The correlation was taken as the average
over two neighboring x2 positions to avoid even-odd
effects. The distance Δx1 ¼ x1 − y1 has to be odd for
the correlation function to be nonzero. Note that we used
ternary unitaries in our numerical computations, though the
derivation to find a finite tensor network diagram of (17)
only requires the four-particle gates to be dual unitary with
respect to the x1 direction. However, the use of ternary
unitaries causes a further pattern for which Eðaαx; aβy; tÞ ¼ 0
[34]. In general, the computed values fit the theoretical

FIG. 1. A top-down view of the PEPS (gray Λ tensors) and the
first layer Uee of ternary unitary gates.

FIG. 2. The tensor network that remains after simplification for
the exampleΔ ¼ 0, r1 ¼ 7, and t ¼ 1. The legs of the unitaries as
well as the physical and α legs of the Λ tensors are contracted
with the corresponding leg of their adjoint. The tilted triangles in
this case each consist of three ternary unitary operators.

FIG. 3. Equal-time correlation functions for t ¼ 1 and a random
simple MPU tensor Λ defining the sPEPS, a uniform ternary
unitary gate of the form (5), and random traceless local operators
aαx and aβy.
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considerations, where the correlation reduces asymptoti-
cally for larger distances and is always zero if Δx2 is above
a certain threshold depending on Δx1.
Discussion and outlook.—A new class of four-particle

gates called ternary unitary gates was introduced in this
work. While we gave two possible ways to construct them
from dual unitaries, it would be desirable to find the most
general parametrization. We expect that further connections
with quantum information theory will become apparent in
the future, analogous to dual unitaries [18,19]. Additionally,
since many current quantum computing architectures use
two-dimensional geometries [39–41], ternary unitaries may
explore their limitations. Other aspects to be explored could
take inspiration from the works of recent years considering
dual unitaries. Among such topics of interest are entangle-
ment dynamics [3,7,11,13] and the approximation of dual
unitaries [8,9,20]. Most likely, two-spatial dimensions give
rise to interesting new phenomena and challenges, in
particular regarding topological aspects.
Note that the results obtained for the expectation value

dynamics are a generalization of the results found in [42].
They confined themselves to solvable states with χ2 ¼ 1,
obtaining nonzero E only in the case of r2 ¼ 0. Since the
MPUs are well-studied objects, their known properties can
be used to analyze the solvable PEPS further. However, one
might not consider MPUs the best ansatz for a solvable
state, since the treatment of the two spatial dimensions is
asymmetric. Notably, the limits in Eq. (17) do not com-
mute, and in our derivation it is sufficient to assume the
operators U to be dual unitary in the x1 direction.

We thank Frank Pollmann and Toby Cubitt for inspiring
discussions. The research is part of the Munich Quantum
Valley, which is supported by the Bavarian State
Government with funds from the Hightech Agenda
Bayern Plus.

Appendix A: Motivation of the physical setting.—For the
left construction in Eq. (5) we can motivate the setting as a
trotterized time evolution governed by a Hamiltonian with
nearest neighbor interactions:

U ¼ Uoo;vertUoo;horzUee;vertUee;horz: ðA1Þ

Here Uee;horz is the interaction between even-indexed sites
with their right neighbors, and Uee;vert with their upper
neighbors. Analogously, Uoo;vert and Uoo;horz start from odd-
indexed sites. The operators consist of nonoverlapping two-
particle gates, see Fig. 4. If we choose these gates as dual
unitaries, we can combine them to form ternary unitary
gates as in Eq. (5):

Uee ¼ Uee;vertUee;horz; Uoo ¼ Uoo;vertUoo;horz: ðA2Þ

They can then be used in the evolution U. The choice of
which gates to combine is basically a repartitioning of

supercells for quantum cellular automata (QCA) [43] and
the same partitionings as used in [44]. Uee and Uoo are the
corresponding QCA to each partitioning and motivate the
first construction in Eq. (5). Notably, QCAs have been used
to analyze Floquet systems [43] and gave rise to the concept
of dual-unitary operators in the process [2,45,46].

Appendix B: Unistochastic M Maps.—This appendix has
further information on the contracting maps introduced in
Eq. (11). First, we provide a visual example to aid the
intuition:

ðB1Þ

Furthermore, note that we can simplify Eq. (12) further, by
writing it in the form

Dαβðx; y; tÞ ¼
Xd2−1

χ¼0

cαβy;χðtÞλ2ty;χ ; ðB2Þ

where fλy;χgd2−1χ¼0
are the eigenvalues of My mod 2 and c

αβ
y;χðtÞ

are polynomials in t. The eigenvalues lie on the unit disk
and have coinciding algebraic and geometric multiplicity if
they are on the unit circle [2]. This result is analogous to
those in [2] and shows that the eigenvalues suffice to
classify ternary unitaries by their ergodicity. Refer to [34]
for a detailed analysis of the M maps for the specific
constructions (5).

Appendix C: Numerical algorithms.—We computed the
nonzero dynamical correlation function (9) by interpreting
the network (10) as the expectation value of a Mn with

FIG. 4. Pattern sequence of dual unitary gates which can be
subsumed as two “time steps” of ternary unitary gates of the
form (5).
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respect to the vectors aαx and aβy. The results can be seen in
Fig. 5. While the correlation does not fall monotonously
with time (or distance), it decreases asymptotically. This
fits with the results one would expect according to (B2) and
the results obtained in [12] for dual unitary operators.
The task of computing the final tensor network repre-

senting the expectation value dynamics is split into two
steps: (1) The conjugations by ternary unitaries of the local
operators aαx and aβy are represented as two MPOs,
respectively. Specifically, we start from a MPO represen-
tation of the identity with a length equal to the extent in the
x2 direction, substitute the local operators aαx and aβy, and
then apply the maps ternary unitaries in a TEBD-type
brick-wall pattern. Just like the M maps the resulting
operators are contractive, so one expects only a modest
increase of entanglement. The two final MPOs are sand-
wiched between the PEPS tensors on the left and right
boundary. (2) The PEPS tensors are first contracted along
the physical legs with their conjugated copy while inserting
the MPOs from step 1 on the left and right boundary, and
MPU ring transfer states on the top and bottom boundary.
This leads to a two-dimensional grid of new tensors
connected by virtual bonds in each of the four spatial
directions. Finally, this network is then contracted row by
row or column by column. We remark that the last substep
is affected by the “curse of dimensionality” for increasing
distance jx1 − y1j.
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