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Networks of semiflexible or stiff polymers such as most biopolymers are known to deform
inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be
much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is
limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium
theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D
and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with
both prior computational and experimental results for linear elasticity. Moreover, the framework we
introduce can be extended to address nonlinear elasticity and network dynamics.
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Networks of stiff or semiflexible polymers are vital for
the function of most living systems. Such networks control
much of the elastic properties of biomaterials ranging from
the cell cytoskeleton to extracellular matrices at the tissue
scale [1–4]. Over the past few decades there has been
significant progress in our understanding of the fundamen-
tal physical properties of semiflexible networks [5–17].
Previous studies of 2D and 3D semiflexible networks have,
among other things, revealed a transition from a bend-
dominated, nonaffine regime to a stretch-dominated, affine
regime [18–28] that is governed by the average polymer
length (or molecular weight), in stark contrast with flexible
polymer systems.
The classical theory of rubber elasticity [29–31] is

very successful in describing the elastic properties
of flexible polymer networks. Early approaches
assumed deformations to be affine, with uniform strain
on all scales. The phantom-network model relaxed this
assumption and showed that local network structure
indeed affects elastic properties, but in a way that does
not change the basic scaling with macroscopic quantities
such as average polymer length, system volume, temper-
ature, etc. [32–34]. By contrast, the strong bending rigidity
of semiflexible polymers invalidates the phantom model
and leads to much stronger nonaffine effects [18,19,35],
including a surprising dependence on dimensionality [22].
Most of the prior work accounting for nonaffinity in
semiflexible networks has been limited to numerical
simulation [20,36–39], while a theory analogous to the
phantom network has been lacking, especially in 3D.
Various models based on effective medium theories

(EMT) introduced for rigidity percolation [40–42] have
been proposed for lattice-based or topologically similar
networks [21,24,43–48], along with floppy-mode models
for off-lattice networks [49,50]. But, both of these
approaches have been limited to 2D networks and have
neglected important thermal fluctuations.
Here, we develop an analytical model for the elasticity

of both thermal semiflexible polymer and athermal fiber
networks that accounts for the nonaffine deformations.
Our model applies to both lattice-based and random off-
lattice networks that are isotropic and homogeneous on
large scales. As we show, this model can be applied to
both thermal and athermal networks. Our prediction of the
bend-to-stretch transition quantitatively agrees with pre-
vious athermal simulations of 3D networks, while
explaining the different scaling dependences on filament
length in 2D lattice and off-lattice (e.g., Mikado) net-
works. Moreover, for thermal networks where simula-
tions are lacking, our model predicts a bend-to-stretch
transition that agrees with previous experiments [26,51].
Although we focus here on the linear elastic limit, this
model can also be extended to address the role of non-
affine fluctuations in the dynamics [52–55], stress stiff-
ening [11,12], and recently identified strain-controlled
criticality [56–59].
We begin by considering an athermal cross-linked semi-

flexible polymer network in 3D. The discussion on 2D and
thermal networks is postponed to later. The network is
formed by N filaments each with polymer length L and
pointlike hinged cross-links with average cross-linking
distance lc. Its Hamiltonian is
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HO ¼
XN
α¼1

½Hb½uαðsÞ� þHs½uαðsÞ��; ð1Þ

where uαðsÞ ¼ uαkðsÞ þ uα⊥ðsÞ is the microscopic displace-

ment of the αth polymer at position s along its contour
(−L=2 < s < L=2), with uαkðsÞ and uα⊥ðsÞ being its longi-

tudinal and transverse components, respectively.Hb½uðsÞ� ¼
κ
R
dsj∂2u⊥=∂s2j2=2 andHs½uðsÞ� ¼ μ

R
dsj∂uk=∂sj2=2 are

the bending and stretching energy, respectively. If a cross-
link exists between the αth and the βth polymer, it leads to an
additional constraint, uαðsαβÞ ¼ uβðsβαÞ, with sαβ (sβα)
being the position of the cross-link on the αth (βth) polymer.
We are interested in how this network deforms under an

external shear stress σO. For athermal networks the defor-
mation is found from theminimum-energy state, inwhich the
microscopic deformations of each polymer are denoted by
ũαðsÞ, and the shear strain of the entire network is γO. The
linear shear modulus is defined asGO ¼ ∂σO=∂γOjγO¼0. For
simplicitywe assume a stress σO in the x-z plane. This causes
(in the linear regime) a simple shear of the x-z plane in the x
direction, such that γO corresponds to a single nonzero term
Λxz ¼ γO in the deformation tensor Λ.
Although the network Hamiltonian has a quadratic form

[Eq. (1)], a direct analytical solution of the minimum-
energy state is challenging for two reasons: the first is the
existence of the cross-linking constraints, which introduces
correlations between different polymers. Therefore, their
deformations uαðsÞ cannot be considered as independent
variables. The other is the unclear relation between the
microscopic deformations (uα) and the macroscopic defor-
mation (γO) for nonaffine deformations. Below we detail
how we overcome these challenges.
To remove the cross-link constraints, we have developed

an EMT in which all the polymers in the original network
are preserved while all cross-links are removed [Fig. 1(b)].
To mimic the restraining effect of the cross-links, each
cross-link is replaced by a spring that connects the polymer
at the position of the cross-link with a substrate. The
substrate can only deform affinely, and its deformation does
not cost any energy. Each spring has two spring constants,
Kk and K⊥, for the parallel and transverse direction
of its connected polymer, respectively. The resulting
EMT has an additional elastic energy HK, and the effective
Hamiltonian is

HEM ¼
XN
α¼1

ðHb½vαðsÞ� þHs½vαðsÞ� þHK½vαNAðsÞ�Þ; ð2Þ

where the microscopic deformation in the EMT is
denoted by vαðsÞ ¼ vαAðsÞ þ vαNAðsÞ, with vαAðsÞ being the
affine displacement and vαNAðsÞ being the nonaffine dis-
placement. Note that only nonaffine displacements
affect HK , since forces are not induced between affinely

deforming polymers that simply stretch or compress uni-
formly. The microscopic affine displacements are given by
vαAðsÞ ¼ sΛ · n̂α, with n̂α defining the polymer orientation.
The additional energy HK is the summation of the elastic
energy of all springs connected to each polymer:

HK½vαNAðsÞ� ¼
Kk
2

X
i

jvαNAkðsiÞj2þ
K⊥
2

X
i

jvαNA⊥ðsiÞj2; ð3Þ

where si is the position of the ith spring, and vαNA⊥ and vαNAk
are the transverse and longitudinal components of vαNA,
respectively. Importantly, terms with the same index α in
Eq. (2) describe a single-polymer Hamiltonian in which the
network structure is accounted for through a harmonic
energy. Such an approach is conceptually similar to the
effective spring constant introduced in Refs. [60,61] for
entangled polymer solutions, as well as tube models for
flexible polymer networks [62].
Under an imposed shear stress σEM, we define the

microscopic deformations in the minimum-energy state
of the EMT as ṽαðsÞ, with a shear strain γEM and an elastic
modulus GEM ¼ ∂σEM=∂γEMjγEM¼0

. Our goal is to find an
EMT that reproduces the elasticity of the original network
on average, i.e., GEM ¼ GO, the inverse of which can be
rewritten using the chain rule

X
αi

∂ũαi
∂σO

·
∂γO
∂ũαi

¼
X
αi

∂ṽαi
∂σEM

·
∂γEM
∂ṽαi

; ð4Þ

where ũαi ¼ ũαðsiÞ and ṽαi ¼ ṽαðsiÞ are the displacements
on the cross-link positions (symbols without tilde are
arbitrary polymer displacements, while symbols with tilde
denote polymer displacements in the minimum-energy
state). To ensure that Eq. (4) is satisfied, we look for an
EMT that satisfies simultaneously

�
∂ũαi
∂σO

�
¼ ∂ṽαi

∂σEM
; ð5aÞ

FIG. 1. (a) 2D sketch of a cross-linked semiflexible polymer
network in either 2D or 3D, with average cross-linking distance
lc. Each polymer has a contour length L. (b) Sketch of the EMT,
in which cross-links are replaced by springs that connect the
polymers with a substrate which deforms affinely (two polymers
connected by one cross-link are connected to the substrate via two
different springs, see, e.g., the dashed polymer). Spring constants
for the parallel and transverse directions of the connected
polymer are Kk and K⊥, respectively.
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∂γO
∂ũαi

¼ ∂γEM
∂ṽαi

: ð5bÞ

In Eq. (5a) we average the effects of random cross-linking
angles in the original network. These requirements may not
be the only appropriate ones and may appear to be stronger
than necessary. However, as we will show later, this choice
does lead to good agreement with the expected macro-
scopic elasticity. Equation (5a) is essentially a coherent
potential approximation as in the classic EMTof 2D lattice-
based networks [42,63]. Importantly, Eq. (5b) is different
from what is usually done in an EMT, in that it allows our
EMT network to deform nonaffinely.
We start with the first requirement. Equation (5a)

describes the local displacement caused by the stress,
which can thus be considered as a local compliance. As
the stress can be decomposed to local forces on each node
in the network, we exert a test force F on a particular node
on the same polymer in both the original network and the
EMT network, and measure the resulting displacements,
δrO and δrEM (see Fig. 2). By letting hδrOin̂ ¼ δrEM, where
n̂ is the orientation of the other polymer cross-linked to
the node in the original network, we obtain the values of the
two spring constants, which for 3D networks read as (see
Sec. I of the Supplemental Material [63]):

K⊥ ¼ Kk ¼
18κ

l3
c
: ð6Þ

The equality of K⊥ and Kk is consistent with an isotropic
effective medium. Importantly, however, the node compli-
ance is still highly anisotropic due to Hs. Note that in
deriving Eq. (6) we assumed for simplicity that all polymers
are straight in the undeformed state of the original network.
This assumption may not hold in real networks but is
consistent with previous lattice-based simulations [15,22].
We discuss this further in Sec. IC of the Supplemental
Material [63].
To solve Eq. (5b), one needs to find the relation between

the macroscopic deformation Λ and the microscopic

deformations uα. This is simple in the affine limit, as
noted above. For nonaffine deformations the situation is
more complex. To address this, instead of determining uα

from Λ, we do it inversely by determining Λ from uα.
Generally, Λ is a functional of all microscopic deforma-
tions, Λ½u1ðsÞ; u2ðsÞ;…; uNðsÞ�. In the small strain limit,
we can always perform a linear expansion,

Λ ¼
X
α

Z
L=2

−L=2
dsuαðsÞ · TαðsÞ; ð7Þ

where TαðsÞ is a third-order coefficient tensor. We find that

TαðsÞ can be uniquely determined from three conditions:

(i) the affine deformation should satisfy Eq. (7), as it is a
special case of the nonaffine deformation; (ii) we assume
the network is homogeneous on a large scale, so all
polymers are identical to each other except for their
different orientations, leading to TαðsÞ ¼ Tðn̂α; sÞ; and

(iii) we assume the network is isotropic [66]. The full
derivation of T is detailed in Sec. II of the Supplemental

Material [63]. A similar macroscopic-microscopic relation
can be defined for the EMTas well with a coefficient tensor
Tα
EMðsÞ, whose value is related to TαðsÞ via Eq. (5b).

For 3D networks TEM ¼ T, while for 2D networks TEM

becomes more complicated due to the floppy-mode defor-
mation [49]; see discussion later.
By solving Eqs. (5a) and (5b), we have linked the EMT

to the original network. The EMT elasticity GEM can be
found by minimizing Eq. (2) under an applied stress, which
should be consistent with the elasticity of the original
network GO (see Sec. III A of the Supplemental Material
[63] for details). For 3D athermal monodispersed networks
(all polymers have the same length) we find that

GO

GA
¼

�
1þ 4

ffiffiffi
2

p
λNA
L

· coth

�
3Lffiffiffi
2

p
λNA

��−1
; ð8Þ

where GA ¼ ρμ=15 is the affine linear elastic modulus, ρ is
the polymer length density, and λNA ¼ l2

c=
ffiffiffiffiffiffiffiffi
κ=μ

p
is a

characteristic nonaffine length scale. We compare this
theoretical prediction with previous simulations on lattice-
based 3D networks [22] and find good quantitative agree-
ment in both the scaling for small polymer length L
(GO ∼ L2) and in the transition to an affine deformation
regime for larger L (Fig. 3). Interestingly, the nonaffinity in
the EMT is dominated by K⊥. For comparison we also plot
in Fig. 3 the predicted modulus with Kk ¼ 0, showing a
minor difference in the nonaffine-affine transition region.
This shows that the longitudinal deformation of the
polymers is dominated by their own stretching rigidity,
while Kk has a minor effect, mainly in the nonaffine-affine
transition where almost all longitudinal deformation is

FIG. 2. Sketch of the test force approach. A particular node on
the purple polymer is deformed by a test force F. The resulting
displacement is δrO in the original network (a), and δrEM in the
EMT (b). For 3D networks the adjacent nodes are assumed to be
fixed, while for 2D networks the displacement of adjacent nodes
need to be considered; see Fig. 4(a).
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achieved from bending surrounding polymers. For sim-
plicity we neglect Kk hereafter.
Having verified our EMT using previous simulations on

athermal networks, we consider thermal networks for
which simulations are challenging computationally. Such
a challenge is due to the thermal fluctuations of the network
state around its ground state, which are crucial to the
elasticity of cytoskeletal networks [11,12]. The elasticity
can be found by calculating the average strain for the
Boltzmann distribution at finite temperature T (see
Sec. III B of the Supplemental Material [63]):

GO ¼ ρμph
15

ð1þ 266.7lclp=L2Þ−1; ð9Þ

wherelp ¼ κ=ðkBTÞ is the persistence length, with kB being
the Boltzmann constant. Here μph ¼ 100κlp=l3

c is the
effective stretch rigidity in the presence of thermal fluctua-
tions. Interestingly, the limit L → ∞ corresponds to a high
molecular-weight analog of a phantom network, including
node fluctuations. This slightly differs (∼10%) from the limit
of affinely deforming nodes with only transverse bending
fluctuations [5,12,63]. For finite L we predict a strong L
dependence of the network elasticity that has not been
identified by previous studies. Moreover, the nonaffinity
leads to a crucial correction to the nonlinear stiffening
effect [11,12], as will be detailed in future work [67].
Above we have focused on 3D networks, but our theory

is general to other dimensionalities. There is, however, an
essential difference between 3D and 2D networks, due to
the Maxwell isostatic condition for rigidity percolation for
coordination number z ¼ Zc ¼ 2d in d dimensions [68].
For networks formed by long polymers the connectiv-
ity approaches 4 from below. The local, near isostatic

connectivity in 2D leads to long-range floppy modes
[49,50] that are absent in 3D, for which there is always
a local floppy mode [see Fig. 4(a)]. In 2D networks,
independent displacements of cross-links are prohibited
without stretching. In the limit of large μ, when one cross-
link in a 2D network is displaced, all other cross-links on its
connected polymer must deform in a particular way to
avoid stretching deformation [see Fig. 4(b)], leading to
displacements of L=lc cross-links. This floppy-mode
deformation requires taking into account the coupled
deformation of multiple cross-links when calculating both
the medium rigidity [Eq. (6)] and the coefficient tensor
[Eq. (7)]. We find that K⊥ ∼ L for a 2D lattice. For Mikado
networks, K⊥ is further enhanced by the broad distribution
of cross-link separations lc along the backbone [49],
resulting in K⊥ ∼ L3. As shown in Sec. IV of the
Supplemental Material [63], we predict the following
scaling dependences in the nonaffine regime:

GO ∼

8<
:

L2 ð3D; any structureÞ
L2 ð2D; latticeÞ
L4 ð2D; MikadoÞ

: ð10Þ

FIG. 3. Shear modulus for 3D athermal networks. Simulation
results of phantom-fcc-lattice network are reproduced from
Ref. [22], with filament length corrected by the minimum length
of rigidity percolation, Lr ¼ 2.85lc. Theoretical prediction is
plotted using Eq. (S41) in the Supplemental Material [63], which
is similar to Eq. (8) but calculated for networks with exponential
length distribution as in the simulation.

(a)

(b)

FIG. 4. (a). Difference between 3D and 2D networks. In 3D
networks, a cross-link can deform in the direction perpendicular to
its two connected polymers, without deforming other cross-links.
In 2D networks, an entire polymer has to move together with the
cross-link, leading to deformation ofL=lc cross-links. (b). Scaling
dependence in 2D Mikado and 2D lattice-based networks. λNA ¼
κ−1=4μ1=4l3=2

c for Mikado and λNA ¼ κ−1=2μ1=2l2
c for lattice-

based. Lr ¼ 5.9lc (Mikado), 2.94lc (phantom triangular), and
2.53lc (Kagome) are the minimum lengths for rigidity percola-
tion. Simulation data reproduced from Refs. [19,28,35] (Mikado),
Ref. [24] (Kagome lattice), and Ref. [27] (phantom triangular
lattice). The slight difference between Ref. [24] and Ref. [27] is
due to their different lattice structures.
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Equation (10) agrees with previous numerical studies for
3D lattices [22], 2D lattices [24,27], and 2D Mikado
networks [18,19,25,28,35], as shown in Fig. 4(b). While
various molecular weight scalings of 2D Mikado networks
have been reported, the previous numerical studies are
consistent with a common ðL − LrÞ4 (see Sec. IV of the
Supplemental Material [63]). Interestingly, although the
local network structure strongly affects the scaling depend-
ence of 2D networks with different distributions of lc, our
model predicts an L2 scaling that is robust for any structure,
including potentially broad, randomly distributed lc in
experimentally relevant 3D networks. Previous experimen-
tal studies on hydrogels and numerical studies on 3D
Mikado-like networks are consistent with an L2 depend-
ence in 3D [26,39,51].
In conclusion, the model presented above constitutes a

basis for understanding the linear elasticity of both thermal
semiflexible polymer and athermal fiber networks in 2D and
3D, including nonaffine effects. Such nonaffine effects are
known to be more important for such systems than for
flexible polymer gels, although most prior work addressing
nonaffinity in such systems has been limited to simulation,
particularly for 3D. As we have shown, the Maxwell
isostatic condition results in an important difference
between 2D and 3D networks, reinforcing the demand for
a 3D theory. Our EMTapproach predictions are invery good
agreement with prior numerical simulations for athermal
networks. In addition, we predict the elasticity of thermal
networks and find an unexpectedly strong molecular weight
dependence for which thermal simulations have been lack-
ing. Our thermal results may aid ongoing experimental
efforts to quantify nonaffine effects, which have proven
inconclusive to date in biopolymer networks.
An important feature of our theory is that the EMT is

allowed to deform nonaffinely, allowing us to capture
accurately nonaffine deformations of real networks. This
also allows predictions of nonaffine fluctuations including
thermal fluctuations, in contrast to prior effective medium
approaches. Our model can be extended to predict nonlinear
elastic effects such as stress stiffening [11,12]. This is
possible even with our assumptions above of small displace-
ments, in a way similar to prior theories of nonlinear
semiflexible chain stretching [5,12,69]. Our model can also
be extended to address strain-controlled criticality that has
previously been identified computationally [67]. However,
an important limitation of our approach is that it is a mean-
field theory, and cannot be expected to predict anomalous
critical exponents. Moreover, with the Hamiltonian of
Eq. (2), the derivation of network dynamics is straightfor-
ward. Finally, our EMT approach is not limited to perma-
nently cross-linked networks, and can be applied also to
transiently cross-linked networks [70–72]. Interestingly, in
Refs. [60,61] an effective spring constant, which is concep-
tually similar to our effective medium rigidity, is estimated
for a solution of entangled polymers. When combined with

the present model, this suggests a possible model for
entangled solutions.
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