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Damping is usually associated with irreversibility. Here, we present a counterintuitive concept to achieve
time reversal of waves propagating in a lossless medium using a transitory dissipation pulse. Applying a
sudden and strong damping in a limited time generates a time-reversed wave. In the limit of a high damping
shock, this amounts to “freezing” the initial wave by maintaining the wave amplitude while canceling its
time derivative. The initial wave then splits in two counterpropagating waves with half of its amplitude and
time evolutions in opposite directions. We implement this damping-based time reversal using phonon
waves propagating in a lattice of interacting magnets placed on an air cushion. We show with computer
simulations that this concept also applies to broadband time reversal in complex disordered systems.
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Damping is usually associated with irreversibility in the
dynamics of physical systems [1–5]. When dissipation is
considered in wave propagation, wave equations are no
longer time invariant under time reversal [6]. Hence, back
propagation deteriorates in lossy media and challenging
strategies are needed to compensate for the effect of
damping [7,8]. The time-reversal counterpart of loss is
gain. For instance, coherent perfect absorbers are time-
reversed lasers resulting from a combination of interfer-
ences and absorption [9,10]. The interplay between gain
and loss has produced unexpected fruitful features and
initiated an intense research in non-Hermitian physics and
parity-time (PT) symmetry [11].
In this Letter, we show that, in a lossless medium,

applying a transitory dissipation for a short period of time
can induce a time-reversed wave. Although energy is
irreversibly lost during this process, a time reversed wave
is generated when the dissipation is removed. In the
following, we will call this a damping-based time reversal
(DTR). This concept applies to all types of waves. It
extends the family of instantaneous time mirror (ITM)
techniques which was restricted to a sudden nondissipative
change in the wave propagation speed (with impedance
mismatch) [12]. First, we show the principle of DTR. We
then provide a simple model and analyze it as a modifi-
cation of the initial conditions by virtue of Cauchy’s
theorem [13]. We then experimentally implement the
DTR concept on phonon waves propagating in a 2D lattice
of coupled magnets in the extreme case of a “freezing”
dissipation pulse. Finally, we discuss these results and show
by numerical simulations that DTR also applies to complex
media such as highly scattering 2D elastic networks.

Figure 1 shows the principle of DTR with a broadband
wave packet undergoing spreading during its propagation
in a dispersive medium [Fig. 1(a)]. At time tDTR, a damping
shock is applied to the medium. The wave field is “frozen”
and returns very slowly to a steady equilibrium state
without oscillating. The damping is then removed, resulting
in the creation of two counterpropagating wave packets

FIG. 1. Principle of a DTR mirror: (a) Propagation of a wave
packet in a dispersive medium at three successive times. (b) At
time tDTR, a strong damping shock is applied, freezing the
propagating pulse. When damping is removed, the wave packet
splits into two counterpropagating pulses. At time 2tDTR, the
counterpropagating wave packet (left) has the same spatial
profile, with half its amplitude, as the initial one (dotted line)
but propagating in the opposite direction with half its amplitude.
The forward propagating wave packet (right) is identical to that of
the initial pulse, with half its amplitude, propagating during 2tDTR
(dotted line) without DTR.

PHYSICAL REVIEW LETTERS 130, 087201 (2023)

0031-9007=23=130(8)=087201(5) 087201-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1817-0772
https://orcid.org/0000-0001-8508-8184
https://orcid.org/0000-0002-8913-1685
https://orcid.org/0000-0002-8494-7562
https://orcid.org/0000-0001-8733-5863
https://orcid.org/0000-0003-2770-3753
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.087201&domain=pdf&date_stamp=2023-02-22
https://doi.org/10.1103/PhysRevLett.130.087201
https://doi.org/10.1103/PhysRevLett.130.087201
https://doi.org/10.1103/PhysRevLett.130.087201
https://doi.org/10.1103/PhysRevLett.130.087201


with half the amplitude of the initial wave field. The
forward propagating packet is identical to the initial
propagating pulse as if no DTR was applied, apart from
the amplitude factor. The backward propagating packet is
the time reversed version of the initial packet with half its
amplitude. Thus, it narrows as it propagates back, reversing
the dispersion effect, until the time 2tDTR, when it returns to
the initial profile. It has the same spatial profile, albeit not
the amplitude, as the initial wave packet but propagates in
the opposite direction [see Fig. 1(b)]. The DTR process
inevitably requires a loss of part of the kinetic energy of the
initial wave which implies a decrease in amplitude of the
time-reversed wave (and similarly of the forward propa-
gating wave).
The DTR concept is introduced by considering waves in

homogeneous nondissipative media that are usually gov-
erned by d’Alembert equation [14]. More generally, the
wave field can be described by an equation in which the
Laplacian operator is replaced by a more complex spatial
linear operator. This type of equations can be written in the
spatial Fourier space for the wave vector k. Considering a
time-dependent dissipation, the Fourier component of the
wave field ϕ̃ðk; tÞ satisfies

∂
2ϕ̃

∂t2
ðk; tÞ þ ζðk; tÞ ∂ϕ̃

∂t
ðk; tÞ þ ω2

0ðkÞϕ̃ðk; tÞ ¼ 0; ð1Þ

with ω0ðkÞ being the angular frequency and satisfying the
wave dispersion relation and ζðk; tÞ the time-dependent
damping coefficient. To lighten the notations, the k
dependence is omitted in the following. In the absence
of damping [ζðtÞ ¼ 0], this equation has a time symmetry
[ϕ̃ðtÞ being a solution, ϕ̃ð−tÞ also is]. This damping term
can be associated with irreversibility, as it breaks the time
symmetry. However, if ζðtÞ remains small compared to ω0,
an approximate reversibility is retained for times smaller
than 1=ζðtÞ [15].
Another mathematical property may be leveraged in the

large ζ limit. Let us apply a strong damping shock localized
in time between t0 and t1 ¼ t0 þ Δt with a coefficient ζ0
satisfying ζ0 ≫ ω0, i.e., a quality factor Q ¼ ω0=ζ0 ≪ 1.
Outside this dissipation pulse, the medium is considered
lossless (ζ ≃ 0). During the pulse, the last term of
Eq. (1) is negligible and ð∂ϕ̃=∂tÞ satisfies ð∂ϕ̃=∂tÞðtÞ ¼
ð∂ϕ̃=∂tÞðt0Þe−ζ0ðt−t0Þ. During the time interval Δt of such
strong damping (Q ≪ 1), the system behaves as an over-
damped harmonic oscillator that returns very slowly to a
steady equilibrium state (without oscillating), ϕ̃ðtÞ ≈ ϕ̃ðt0Þ.
A more detailed calculation shows that in the long run limit,
the wave amplitude or oscillator position decreases as
ϕ̃ðtÞ ∼ exp½−ðω2

0=4ζ0Þðt − t0Þ� [15]. To stop the “vibra-
tion” velocity but retain the oscillation position, the
duration Δt of the dissipation pulse must then satisfy the
freezing condition

1

ζ0
< Δt <

ζ0
ω2
0

: ð2Þ

For high damping, Δt can thus be large compared to the
period of the initial wave. The DTR process can be
interpreted as a change of the initial Cauchy conditions
[13]. The wave field starts evolving again with the new
initial conditions at time t1, ðϕ̃ðt1Þ; ∂ϕ̃=∂tðt1ÞÞ ≈ ðϕ̃ðt0Þ; 0Þ
which produces two counterpropagative waves using the
superposition principle [12]

�
ϕ̃ðt1Þ;

∂ϕ̃

∂t
ðt1Þ

�
≈
1

2

�
ϕ̃ðt0Þ;

∂ϕ̃

∂t
ðt0Þ

�

þ 1

2

�
ϕ̃ðt0Þ;− ∂ϕ̃

∂t
ðt0Þ

�
: ð3Þ

The first term is associated (up to a factor one-half) to the
exact state of the initial wave field ϕ̃i before the DTR, but
shifted in time ϕ̃ðt > t1Þ ¼ 1

2
ϕ̃iðtþ t0 − t1Þ. The second

term, with a negative sign in front of the field derivative,
corresponds to the time reversed wave: ϕ̃ðt > t1Þ ¼
1
2
ϕ̃ið−tþ t0 þ t1Þ. In the case of partial damping, the

amplitude of both counterpropagating waves is reduced
to less than half the initial one [15].
We implement a DTR with phonon waves propagating in

a two-dimensional lattice. This lattice is composed of
interacting magnets levitating on an air cushion on which
we can apply a sudden change of damping. Figure 2 shows a
schematic of the experimental setup. Each of the 200 mag-
netic disks is made of a small neodymium magnet (Super-
magnete N35) with the same magnetic orientation and
glued on top of a plastic disk of diameter 1.5 cm to obtain
repulsive magnet-magnet interactions. The disks are sus-
tained by a uniform air cushion obtained by injecting
compressed air through an aluminum porous plate
(Metapor BF100-AL) to drastically reduce the friction

FIG. 2. (a) Schematics of the experimental setup composed of
crystal of magnetically repulsive disks. (b) The friction of the
disks on the table is drastically reduced by an air cushion system.
The DTR on phonon waves is obtained by quickly moving down
a silicone sheet to freeze the crystal. (c) Top view of the crystal
excited by a magnetic bar.
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coefficient with the support down to a value of
ζ ¼ 0.09� 0.01 s−1. This friction coefficient is measured
from the relaxation time of a single disk motion in the
horizontal plane τ ¼ 1=ζ ∼ 10 s, which is much longer than
that in the absence of the air cushion during the damping
shock (freezing) τ0 ¼ 1=ζ0 < 0.002 s, namely, at least 1
order of magnitude smaller than the resolution limit of our
camera. These disks are confined within a L ¼ 40 cm wide
square arena delimited by repulsive magnetic walls to avoid
contact with the edges. At rest, the magnetic disks self-
organize into a hexagonal lattice resulting from the balance
between repulsion and confinement [16]. Longitudinal-like
phonon waves can be excited in this lattice by moving (in
the plane) a 12 cm wide magnetically repulsive bar placed
on one edge [see Fig. 2(c)]. The excitation pulses are
composed of 0.6 s sinusoidal arcs with an amplitude of
1.95 cm. The DTR is achieved by a vertical actuation of a
translucid silicone sheet to squeeze and release the disks in a
short time scale relative to their movement. The lattice
motion is recorded with a camera at 50 fps (Basler
acA1300-200uC) to follow the disk positions over time.
Near its equilibrium point, the lattice of magnets can be

modeled with good approximation as frictionless particles
that interact harmonically. The phonon waves are simulated
using as initial conditions the experimental positions of the
disks and of the exciting bar.
We perform a DTR experiment on a propagating phonon

composed of one and two successive pulses. Figures 3(a)
and 3(b) show the respective time evolutions of the
longitudinal displacement averaged over the magnets
surrounding the excitation source [disks with purple circles
in Fig. 2(c)]. The “freezing” is performed respectively
between times t0 ¼ 0.60 and t1 ¼ 0.95 s and time t0 ¼
1.35 and t1 ¼ 1.80 s, when the waves travel a distance
about 20 cm to the middle of the lattice (∼L=2). Note that in
the evolution of the wave profile along the y axis, a forward

propagating wave is also observed with half the amplitude
of the initial wave [15].
In both cases, the DTR produces a backward propagating

phonon with a time-reversed profile relative to the initial
phonon with approximatively half the initial amplitude (see
Fig. 3). No time-reversed refocusing signal is observed in the
control experiment without DTR (red color). The computer
simulations with harmonic interactions (dashed lines) are in
good agreement with the experimental observations. From
the backward phonon pulse in Fig. 3(a), we may also
estimate a wave speed c ≈ ðL=2Þ=t0 ≈ 0.33 m=s. For such
a phonon wave with a central frequency ∼0.8 Hz, the
wavelength λ ≈ 0.4 m is much larger that lattice constant
a0 ≈ 2 cm. In this long wavelength limit, the characteristic
harmonic pulsation ω0 ≈ c=a0 ≈ 16.5 s−1 [17] which satis-
fies the freezing condition [Eq. (2)] ζ0=ω2

0 > 1.8 s.
The experimental fidelity of the DTR can be verified by

measuring the normalized cross-correlation between the
initial excitation profile from 0 to t0 and the displacement
profile measured after t1. For both excitation profiles, we
observe a maximum in the cross-correlation when the back-
propagation time equals the forward-propagation time. It
reaches values of 0.46 and 0.44, for the experiments with
one and two excitation pulses, respectively, in close agree-
ment with the expected value of 0.5 given by the energy
conservation. The minor discrepancy is presumably due
to the remaining friction between the magnets and the
porous substrate as well as the imperfection of the freezing
process.
DTR is expected to be independent of the complexity of

the medium. To show the robustness of DTR concept, we
performed computer simulations for a 2D disordered
system where both longitudinal and transverse waves
propagate and are strongly scattered (and coupled). This
numerical model of mass spring has been introduced by
Harazi et al. [18] to simulate the ultrasound propagation in
disordered stressed granular packings. The model consists
of a two-dimensional percolated lattice of point particles of
mass m connected by linear springs of random stiffness.
The spring constants ks are uniformly distributed between

0.5ks
−

and 1.5ks
−
, ks

−
being the average spring constant

[Fig. 4(a)]. The masses are randomly placed on a
70 × 70 square network with a filling factor of 91%.
Their in-plane vibrations are governed by Newton’s equa-
tion with harmonic interactions to its neighboring particles
defined by their angular frequencies ω ¼ ffiffiffiffiffiffiffiffiffiffiffi

ks=m
p

. The
lattice is submitted to a static stress (tension) by pulling the
four walls of the square lattice with a strain equal to 0.2 to
ease the linear propagation of transverse and longitudinal
elastic waves. This defines a harmonic potential for each
particle of the lattice as in the experimental system. After
this prestress phase, the walls are kept fixed. The network is
then excited by the in-plane displacement of three particles
(source) at x ¼ 4a (with a the distance between masses)
with one cycle of sine at angular frequency ωexc ¼ 0.35ω̄

FIG. 3. DTR of a phonon wave with a single pulse profile (a)
and a double pulse profile (b). Time evolution of the mean
displacements in the longitudinal y direction of the four disks
(with white arrows) in front of the excitation source [see
Fig. 2(c)]. Experiments with DTR performed between time t0
and time t1 (green circles) and control experiments without DTR
(red square). Associated simulations in dashed lines.
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with ω̄ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ks
−
=m

q
. Figures 4(b) and 4(d) show the time

evolution of the in-plane displacement of the source and of
the associated wave field at various times, respectively. At
t ¼ 0, the motion is confined to the source. Then, the
source motion decreases rapidly at a noise level of
approximately one-tenth of its initial value. The initial
perturbation propagates either at longitudinal wave or
transverse wave speeds [19] and is strongly scattered in
the inhomogeneous mass-spring network at long-time
propagation. At time t ¼ 95 T0, the perturbation spreads
through the network and the particle motions become
randomly distributed. The network acts as a complex
disordered medium due to the random spring stiffnesses
and the random vacancies in the squared network. When
the DTR is applied at tDTR ¼ 300 T0, all the particle
velocities are set to zero, as if an infinite damping was
applied instantaneously, keeping only the potential energy
in the system. Immediately after, the masses are released
with zero velocity [third panel Fig. 4(d)]. The particles
undergo complex motions until a coherent field appears
refocusing on the initial source around time t ¼ 2tDTR ¼
600 T0 [fourth panel in Fig. 4(d)]. The horizontal dis-
placement of the source undergoes a very sharp increase
reaching approximately 80% of its initial value [Fig. 4(c)].
The converging wave then diverges again, creating a new
complex displacement field. The refocusing is also
observed in time at t ¼ 2tDTR [see Fig. 4(c)].
The DTR process results from the decoupling of the

initial wave field from its time derivative. The kinetic
energy associated with the time derivative of the field

∂ϕ̃i=∂t vanishes when the dissipation is activated while the
potential energy associated to the wave field ϕ̃i remains
unchanged. In the case of an initially propagating wave, the
energy of the wave is equally partitioned between potential
and kinetic energy. Thus, half of the initial energy is lost in
the DTR process resulting in a quarter of the initial energy
being TR while another quarter forward propagating.
However, the refocusing signal can still reach 80% of
the initial amplitude as measured in the simulations [see
Fig 4(c)]. This apparent contradiction results from the
interferences between the refocusing wave and the redi-
verging one which produce a standing wave field alternat-
ing kinetic and potential energy [15]. Note that during
propagation in a complex medium, scattering induces
interferences which similarly induce fluctuations in the
energy partition of the wave field.
The Cauchy analysis in terms of initial conditions to

determine the wave field evolution enables one to make a
link with Loschmidt’s gedanken experiment for particles
evolution [20]. Loschmidt imagined a demon capable of
instantaneously reversing the velocity of the particles of a
gas while keeping their position unaffected and, thus, time
reversing the gas evolution [20,21]. Although this scheme
is impossible in the case of particles due to the extreme
sensitivity to initial conditions, it is more amenable for
waves because they can often be described with a linear
operator and any error in initial conditions will not suffer
from chaotic behavior. The wave analogue of this
Loschmidt demon changes Cauchy’s initial conditions
ðϕi; ∂ϕi=∂tÞ to ðϕi;−∂ϕi=∂tÞ. Upon freezing, the wave

FIG. 4. (a) Schematic view of the 2D mass-spring model. (b) Time evolution of the horizontal (in-plane) displacement uðtÞ at the
source excited along x at t ¼ 0 by a short pulse. DTR time: tDTR ¼ 300 T0 (red dashed line). (c) Close-up of (b) around the refocusing
time 600 T0. The black dashed line represents uð600 − tÞ. (d) Panels representing the field displacement of the source at t ¼ 0 (initial
time), 95T0, tDTR ¼ 300 T0 (during the freezing shock) and t ¼ 600 T0 (refocusing time). Lengths are expressed in units of lattice
constant a0.
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field initial conditions are reset with a null time derivative
but because of the superposition principle [see Eq. (3)], the
DTR produces a time-reversed wave as a Loschmidt
demon. The DTR concept is generic and applies even in
the case of complex inhomogeneous materials as shown in
the 2D simulations (see Fig. 4) since the superposition
principle is independent of the complexity of the medium.
In contrast with the ITM approach based on wave

velocity changes [12] and standard digital time reversal
methods [22], the backward propagating wave is directly
proportional to the TR of the original wave and not to the
time reversal of its time derivative or antiderivative. From
that perspective, DTR has thus no spectral limitations and
can be applied to broadband wave packets. This results in a
higher fidelity and enhanced broadband capabilities com-
pared to other methods [12,22].
The limitation in time-reversing wide spectral range

comes from the ability to freeze the field sufficiently
rapidly in comparison with the phase change in the wave
packet, resulting in the maximum value for the angular
frequency ω0 ≪ ζ. The DTR principle could be applied to
any type of waves such as in optics by changing abruptly
the conductivity of the medium [23], or in acoustics by
using varying electrorheological medium [24].
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