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We theoretically study the conductivity of a disordered 2D metal when it is coupled to ferromagnetic
magnons with a quadratic spectrum and a gap Δ. In the diffusive limit, a combination of disorder and
magnon-mediated electron interaction leads to a sharp metallic correction to the Drude conductivity as the
magnons approach criticality, i.e., Δ → 0. The correction is nonsingular and is distinctively weaker than,
for example, the log-squared correction obtained when disordered electrons couple to diffusive spin
fluctuations near a Hertz-Millis transition. The possibility of verifying this prediction in an S ¼ 1=2 easy-
plane ferromagnetic insulator K2CuF4 under an external magnetic field is proposed. Our results show that
the onset of a magnon Bose-Einstein condensation in an insulator can be detected via electrical transport
measurements on the proximate metal.
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In the low-temperature normal state of a pure metal,
electron-electron interactions manifest themselves only in
the renormalization of the electron spectral parameters [1].
In the presence of disorder, however, electrons propagate
diffusively at distances longer than the mean-free path l,
resulting in stronger interactions. These disorder-enhanced
interactions, together with reduced dimensionality, lead to
singularities in various thermodynamic and transport quan-
tities [2]. Singularities in transport can also arise through
the coupling of electrons to other dynamical degrees of
freedom [3]. Several works have studied the conductivity of
disordered Fermi liquids tuned close to magnetic quantum
critical points. Near these critical points, disorder generates
a ln2T correction to the Drude conductivity [4–6], sug-
gesting that diffusive critical spin fluctuations can also
strongly enhance impurity scattering at low energies. Few
works since then have studied the feedback of critical spin
fluctuations on disordered electrons in the form of quantum
conductivity corrections [7]. It is therefore interesting to
explore such corrections arising in the vicinity of a wider
variety of critical points.
To access a wider array of materials and therefore critical

phenomena, we may consider a bilayer system affixing a
ferromagnetic insulator (FI) to a disordered conductor (see
Fig. 1). When the FI approaches a quantum critical point
with a divergent ðq;ΩÞ ¼ ð0; 0Þ susceptibility, e.g., the
equilibrium Bose-Einstein condensation (BEC) of ferro-
magnetic magnons, critical spin fluctuations injected into
the metal layer can drive conductivity corrections.
However, the presence of an exchange field due to the
FI magnetization results in Zeeman splitting in the electron
sector, introducing a gap to the diffusive, transverse spin

density fluctuations in the metal. This gap leads to a
detuning between the critical magnon mode of the FI
and the diffusive spin density fluctuations in the metal,
possibly weakening the influence the critical magnons have
on the transport in the adjacent metal. A quantitative
understanding of the effects of this detuning on the
conductivity correction remains an open problem but
may have relevance to the field of spintronics, where
magnetoresistance phenomena in metal-FI bilayers are
routinely studied. This understanding may also uncover
an intriguing possibility of probing the onset of magnon
BECs in FIs using charge transport measurements.
In this Letter, we theoretically address this problem by

studying the conductivity of a disordered 2D metal when it
is exchanged-coupled to a FI as depicted in Fig. 1. We
monitor the conductivity of the metal as the spin-1 magnons
undergo BEC [10–12]. We find that this BEC transition
leads to a sharp enhancement in the conductivity as Δ → 0,
where Δ is the distance to the BEC critical point. However,
this enhancement is nonsingular and is therefore distinct
from the singular logarithmic corrections studied in the past
[4–6]. That said, this enhancement can be of order 10 mΩ

FIG. 1. A depiction of the bilayer system. The metal and the
ferromagnetic insulator couple via the exchange coupling J , and
jc represents the charge current flowing in the metal along the
x axis. A magnetic field is applied along the z axis.
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for a certain FI at Δ ≈ 0 and should be detectable. A
corollary of this finding is that a conductivity measurement
on the adjacent metal at a fixed bilayer temperature can
probe the BEC transition in the magnetic insulator through
the detection of this sharp conductivity enhancement.
While magnon BECs in quantum magnets are typically
probed using, e.g., magnetic susceptibility, specific heat,
and magnetocaloric measurements [13], this Letter pro-
poses an alternative probe of the onset of a magnon BEC
based on charge transport measurements.
Model.—Let us consider a 2D metal deposited atop a FI

of thickness d with the interface held in the xy plane (see
Fig. 1). The metal layer is modeled as a standard disordered
electron gas with the Hamiltonian

He ¼
Z

d2rψ†
rσ

�
−
ℏ2∇2

2m
−μþ σℏωZ

2
þuðrÞ

�
ψ rσ; ð1Þ

where summations over repeated spin indices are implied.
Here, ψ rσ is the electron field operator, μ is the chemical
potential, and uðrÞ ¼ u

P
i δðr − riÞ is the short-ranged

s-wave impurity potential; ℏωZ is the total electron Zeeman
energy arising from the external field B and the FI
magnetization, both of which are parallel to the z axis.
A model system for studying magnon BEC is a FI with

an easy-plane magnetic anisotropy and an external field
applied normal to the easy plane. For an xy easy plane, the
ferromagnetic Hamiltonian may be written as

HF ¼
Z

0

−d
dz

Z
d2r

�
A
2s2

ð∇sðr; zÞÞ2

þ K
2s2

s2zðr; zÞ þ ℏγBszðr; zÞ
�
; ð2Þ

where A and K > 0 parametrize the exchange stiffness and
the anisotropy, respectively, γ is the gyromagnetic ratio,
sðr; zÞ is the local spin density, and s is the saturated spin
density.
Equation (2) has global U(1) spin-rotational symmetry

that entails conservation of total sz. For large enough fields
B > Bc ≡ K=ℏsγ, the system is in the U(1)-symmetric
normal phase, where the magnetization points in the z
direction, parallel to the field. The system then enters the
BEC phase for B < Bc, where the order parameter cants
away from the z axis. The BEC phase is characterized by a
broken U(1) symmetry, where the order parameter’s azi-
muthal angle ϕ defines the U(1) angle (see Fig. 2).
We focus exclusively on the normal phase, but in the

vicinity of the BEC critical point B≳ Bc, and perform
the Holstein-Primakoff transformation with respect to the
ordered moment [14]. In terms of the magnon operator aqk,
Eq. (2) can be reexpressed as HF ¼ Hm þHint, where Hm
describes the free magnons and Hint their interactions. The
free contribution reads Hm ¼ εqka

†
qkaqk, where q and k

label the in-plane and transverse wave vectors, respectively,
εqk ¼ Δþ Aðq2 þ k2Þ=s is the magnon spectrum, and Δ ¼
ℏγðB − BcÞ is the magnon gap (see Supplemental Material
[15]). We neglect magnon-magnon interactions, as quan-
tum conductivity corrections are typically measured at low
temperatures, where the magnons are dilute, so their mutual
interactions should not play a crucial role. We account for
viscous magnon loss in the FI through phenomenological
Gilbert damping.
For a thin magnetic film, we may ignore the variation of

the magnetization in the transverse direction and work
with the average quantity s̄ðrÞ ¼ ð1=dÞ R 0

−d dz sðr; zÞ, where
sðr; zÞ represents the fluctuating portion of the FI spin
density. At the interface, the spin density in the metal
couples to this average quantity via exchange,

Hc ¼ −
J v0
2

Z
d2rψ†

rσσσσ0ψ rσ0 · s̄ðrÞ; ð3Þ

where σ is the vector of Pauli matrices, and v0 is the
microscopic unit cell volume of the FI.
Formalism.—Within the Kubo formalism, the response

function of interest is given by ΠRðr − r0; t − t0Þ ¼
−ði=ℏÞΘðt − t0Þh½jcðr; tÞ; jcðr0; t0Þ�i, where jc¼

P
σðeℏ=

2miÞ½ψ†
rσð∂xψ rσÞ−ð∂xψ†

rσÞψ rσ� is the paramagnetic current
operator along x (see Fig. 1). We include the
effects of the FI by calculating the response function to
J 2 order. The conductivity is then produced via σ ¼
limν→0limp→0iΠRðp; νÞ=ν after accounting for the diamag-
netic component order by order in J .
The current-current correlator to leading order gives the

Drude result σD ¼ σ0kFl, where σ0 ¼ e2=h. To second
order in J and upon disorder averaging, Figs. 3(a)–3(e)
depict the leading contributing diagrams. Gray bands
represent diffusons (i.e., ladders), the wavy lines are the
spin fluctuations, and the solid lines denote the electron
propagator obtained within the Born approximation,
GR

kσðωÞ ¼ ðω − ξkσ=ℏþ i=2τÞ−1, where ξkσ ¼ ℏ2k2=2m −
μþ σℏωZ=2 and τ is the elastic scattering time. The circles
represent the usual current vertex.

FIG. 2. Order parameter orientation in the normal and the
BEC phases. Canting of the magnetization in the BEC phase
produces a planar component of M and signals a spontaneous
breaking of global U(1) symmetry. The in-plane angle ϕ
defines the U(1) phase.
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The Zeeman splitting, ℏωZ ¼ ℏγ̃Bþ J S (γ̃ being the
gyromagnetic ratio of the metal and S the total spin in the
magnetic unit cell), has two contributions: first term
due to the external field and the second due to the static
magnetization of the FI. This splitting generates a
shift in the diffuson pole whenever spins on the upper
and lower branches are antiparallel, i.e., the diffuson
[depicted in Fig. 3(f)] reads ð2πg0τ2ℏÞ−1fDq2 � i½ωþ
ðσ1 − σ3ÞωZ=2�g−1δσ1σ2δσ3σ4 , where the þ (−) sign obtains
when the propagators on the top side of the ladder are
retarded (advanced) and on the bottom side are advanced
(retarded), D ¼ v2Fτ=2 is the diffusion constant, and g0 ¼
m=2πℏ2 is the density of states per spin of the metal. In
Figs. 3(a)–3(e), each bare spin vertex is dressed by this
impurity ladder [see Fig. 3(g)], thus resulting in the
renormalized vertex Γα (depicted as filled diamonds),
where α ¼ x, y, z labels the spin orientation (see
Supplemental Material [15]) [16].
Results.—Figures 3(a)–3(c) cancel exactly. In evaluating

Figs. 3(d) and 3(e), we introduce the FI response function
χRαβðr; tÞ≡ −iΘðtÞh½s̄αðr; tÞ; s̄βð0; 0Þ�i. In the diffusive re-
gime jΩjτ;ωZτ ≪ 1, Dq2τ ≪ 1, the conductivity correc-
tion due to spin fluctuations becomes

δσs
σ0

¼ −
πJ 2v20v

4
Fτ

2g0
2ℏ

Z
d2q
ð2πÞ2

Z
dΩ
2π

dFðΩ; TÞ
dΩ

×
X
σ¼�

Im

�
q2

χR−þðq;ΩÞ þ χRþ−ðq;ΩÞ
½Dq2 − iðΩþ σωZÞ�3

�
; ð4Þ

where the function FðΩ; TÞ ¼ Ω cothðℏΩ=2kBTÞ con-
tains the temperature dependence (see Supplemental
Material [15]). The retarded transverse magnon pro-
pagator reads (see Supplemental Material) χR−þðq;ΩÞ ¼
ð4s=dÞðΩ − εq0=ℏþ iαjΩjÞ−1 ¼ χR�þ−ðq;−ΩÞ, where α is
the Gilbert damping parameter.
We first compare Eq. (4) with the Altshuler-Aronov

correction arising from the screened Coulomb interaction.
This correction can be obtained by setting ωZ ¼ 0 in
Eq. (4) and replacing χR�∓ by the propagator for the
diffusive charge fluctuations [2,17]. In 2D, this leads to
an insulating correction δσc ¼ −ccσ0 lnðℏ=kBTτÞ, where
cc is an order-one constant [18,19]. Unlike the Coulomb
case, impurity ladders in Figs. 3(d) and 3(e) connect
electrons with opposite spins, which accumulate different
phases through the ladder due to the Zeeman field. This
generates a shift in the diffuson pole along the frequency
axis by �ωZ and renders the q integral divergent at
Ω ¼ �ωZ. This divergence occurs due to the long-wave-
length sector of the diffuson; at finite temperatures, this
infrared divergence can therefore be cut off by the elec-
trons’ inelastic dephasing length lϕ. We implement this
cutoff by replacing Dq2 → Dðq2 þ l−2

ϕ Þ in the diffuson.
In evaluating Eq. (4), we consider a candidate material

suitable for testing our findings: K2CuF4 is an S ¼ 1=2,
quasi-2D, square-lattice FI with an exchange parameter
J ¼ 23 K and easy-plane anisotropy of 0.22 K [20]. A
T ≈ 0, BEC transition was achieved in this material at a
critical field of HcðT ≈ 0Þ ≈ 2.4 kOe [21], and this critical
field was found to decrease linearly with temperature, i.e.,
HcðTÞ ¼ HcðT ≈ 0Þ − aT, in agreement with the theory of
the 2D BEC universality class [22], and vanish at T ≈ 6 K.
In Fig. 4, Eq. (4) is plotted as a function of the

dimensionless magnon gap Δτ=ℏ ¼ γðB − BcÞτ in units
of ð2S=π2ÞðEFτ=ℏÞðJ τ=ℏÞ2ðv0=dl2Þ (see Supplemental
Material [15]). Gilbert damping is fixed to α ¼ 0.1 through-
out, and we fix τ ¼ 10−14 s. The conductivity correction is
then plotted for temperatures T ¼ 0, 0.25, 0.5, 0.75, 1 K,
where the BEC phase is well defined. A sharp enhancement
in the conductivity is obtained as B → Bc at both zero and
finite temperatures; however, at finite temperatures, the
correction is ultimately cut off by thermal dephasing and
converts into a downturn as the magnon gap Δ falls below
kBT. If we use J ∼ 1 K, K2CuF4 lattice constant of
a ≈ 5.5 Å, d ∼ a, l ∼ 10 nm, lϕ ¼ 10l, and kFl ∼ 100,
we have ð2S=π2ÞðEFτ=ℏÞðJ τ=ℏÞ2ðv0=dl2Þ ∼ 10−7. Given
the peak values reached in Fig. 4, we expect a conductivity
enhancement of order δσs=σ0 ∼ 10−5 at low temperatures.
Since σ0 ¼ ðkFlÞðe2=hÞ, this translates to a sheet resistance
correction of order ΔRsheet ∼ 10 mΩ.
Equation (4) gives a metallic correction. Magnetic

fluctuations in the FI mediate electron interactions in the
triplet channel, which are known to generate positive
corrections to the conductivity of disordered electrons

FIG. 3. (a)–(e) The contributing conductivity diagrams arising
after disorder averaging. Wavy lines represent magnon propa-
gators, shaded gray bars represent impurity ladders, and dashed
lines connected by a star represent a single impurity scattering
event. (f) A depiction of the ladder function consisting of an
infinite sum of noncrossing single impurity scattering events.
(g) The dressed spin vertex, depicted in terms of the ladder. The
empty diamond denotes the undressed spin vertex σα.
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[5,6,23]. Also, critical magnetic fluctuations here give a
nonsingular enhancement to the conductivity. This is unlike
the problem of disordered electrons coupled to spin
fluctuations in the vicinity of a disordered Hertz-Millis
transition, where a singular log-squared correction was
obtained [5]. This difference arises because the Zeeman gap
ωZ detunes the diffuson resonances in ðq;ΩÞ space away
from those of the magnon propagator [see Eq. (4)].
However, an enhancement in the conductivity still ensues
as the magnons approach criticality as long as this detuning
is weak, i.e., ωZτ ≪ 1. In the inset of Fig. 4, we verify that
the conductivity enhancement vanishes as ωZτ increases.
Discussion.—The external field should affect the elec-

trons’ orbital motion. The formation of Landau levels due
to the perpendicular field should not have any significant
effects on our results, as the diffusive condition ωZτ ≪ 1
implies ωcτ ≪ 1 (ωc being the cyclotron frequency) and so
the levels remain unresolved. Even a weak magnetic field
suppresses weak localization, so we neglect localization
corrections to the conductivity. Particle-particle scattering
can also give rise to a conductivity correction δσpp.
However, for the screened Coulomb interaction, δσpp is
known to be a smooth function of the field, varying as
δσpp ∝ h2 for h ≪ 1 and δσpp ∝ ln h for h ≫ 1, where h ¼
2DeB=πkBT in 2D [24]. We therefore expect no sharp
corrections to arise due to the orbital effect as Δ → 0 and
that it merely leads to a smooth background correction to
the sharp enhancement found in this Letter.
Many works have studied the BEC of magnetic quasi-

particles in dimerized antiferromagnets, which involves a
field-induced BEC of spin-1 triplet excitations known as
triplons [10,12,13]. A difference between this triplon BEC
and the magnon BEC studied in this Letter is that the triplon
band minimum occurs at wave vector Q ¼ ð−π=a; π=aÞ

due to the underlying antiferromagnetic correlations. As a
result, spin fluctuations interact strongly with electrons that
are close to narrow regions of the Fermi surface, the so-
called “hot spots,” which are connected by Q. This leads to
important differences and a separate analysis may be
needed, see Refs. [8,9].
There is a body of works investigating nonequilibrium

BEC of magnons, achieved, e.g., by driving a solid film of
yttrium iron garnet—a ferrimagnetic insulator—with
microwave radiation [25]. This nonequilibrium magnon
BEC is different from the equilibrium BEC studied here in
that the magnon spectrum remains gapped in the former
case; nonequilibrium BEC is achieved by raising the
magnon chemical potential and is thus attributed to the
change in its distribution function. The conductivity cor-
rections computed in this Letter are sensitive to the magnon
spectrum, and the magnon distribution function does not
enter Eq. (4). Therefore, the same kind of logarithmic
correction to the conductivity may not arise at the onset of a
nonequilibrium magnon BEC.
Conclusion.—We have studied the conductivity of a

disordered metal in which the electrons couple to a magnon
system tuned close to a BEC critical point. The combina-
tion of metallic disorder and critical magnetic fluctuations,
as the magnon gap closes, results in a sharp, though finite,
enhancement to the conductivity. The metal-FI bilayer
system proposed in this Letter enables one to detect the
onset of a magnon BEC by performing electrical transport
measurements on the adjacent metal. As such, this proposal
contributes to a recent body of works explicating how
charge transport can be used to probe magnetic insulators in
similar metal-insulator bilayers [26–34]. The utility of the
proposed bilayer also extends beyond the scope of this
Letter. The possibly of destabilizing a Fermi liquid using
magnetic fluctuations offers an exciting arena to engineer
unconventional phases. Over the last several years,
magnon-induced unconventional superconductivity has
been predicted at the surface of topological insulators
[35] and in metals interfaced by magnetic insulators [36–
38]. It would be interesting to explore if any other unconven-
tional phases can be induced in an otherwise trivial metal by
coupling it to magnetic fluctuations derived from, e.g.,
quantum spin liquids or other exotic magnetic phases.
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