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Semiconductors’ sensitivity to electrostatic gating and doping accounts for their widespread use in
information communication and new energy technologies. It is demonstrated quantitatively and with no
adjustable parameters that the presence of paramagnetic acceptor dopants elucidates a variety of hitherto
puzzling properties of two-dimensional topological semiconductors at the topological phase transition and
in the regime of the quantum spin Hall effect. The concepts of resonant states, charge correlation, Coulomb
gap, exchange interaction between conducting electrons and holes localized on acceptors, strong coupling
limit of the Kondo effect, and bound magnetic polaron explain a short topological protection length, high
hole mobilities compared with electron mobilities, and different temperature dependence of the spin Hall
resistance in HgTe and (Hg,Mn)Te quantum wells.
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Introduction.—Quantized Hall resistance is a hallmark of
two-dimensional (2D) topological electronic systems [1].
The integer quantum Hall effect’s high-precision quantiza-
tion is behind a new definition of units [2], whereas other
quantum Hall phenomena lead to many far-reaching
developments [1]. Surprisingly, however, although the
quantum spin Hall effect (QSHE) has been known for
more than a decade [3–5], experimental resistance magni-
tudes attain the expected value h=2e2 only in mesoscopic
samples, such as micron-size HgTe-based quantum wells
(QWs) [6,7] and sub-100-nm atomically thin 1T0-WTe2 2D
monolayers [8,9]. Moreover, although several theoretical
models have been proposed [10,11], a short experimentally
found protection length has usually been assigned [6–9] to
unidentified charge puddles that trap edge carriers and
within which spin flip, allowing for scattering between
helical edges, occurs [12].
We claim here that the challenging properties of QSHE

semiconductors result from the presence of native acceptors
in these materials. Quantitative agreement between exper-
imental and theoretical values of the topological protection
lengths supports this claim. The starting point for this work
is a quantitative theory of acceptor states in HgTe QWs,
which provides positions of acceptor levels with respect to
bands and topological edge states as a function of the QW
thickness. With this information, we contend that the
acceptor density is determined by the gate voltage range
in which edge states carry the electric current [5–9,13,14].
Furthermore, considering charge correlation and Coulomb-
gap effects [15], the acceptor scenario explains why at the
2D topological phase transition, the mobility of holes is
significantly greater than that of electrons [16,17], as well as
elucidates the origin of high-frequency conductivity [18]

and gating hystereses [14]. As a next step, a theory
of exchange coupling between electrons and acceptor
holes [19] is employed to demonstrate that, in topological
materials, the interaction between edge electrons with
acceptor holes reaches the strong coupling limit of the
Kondo effect, where the spin dephasing rate assumes, up to a
material-specific logarithmic correction, a universal behav-
ior discussed in the context of magnetic impurities [20–22].
The central result of this work is that, in this limit, the
topological protection length Lp in the Ohmic conductivity
regime is given by a product of the inverse of one-
dimensional (1D) acceptor hole density in the edge region
and the anisotropy of exchange coupling to hole spins. This
finding elucidates the magnitude of Lp in HgTe QWs and
WTe2 2D monolayers. Finally, we demonstrate that the
formation of acceptor bound magnetic polarons explains a
difference in carrier mobilities and the temperature depend-
ence of the edge resistivity of topological HgTe and
Hg1−xMnxTe QWs [7]. The results presented here are
supported and extended in the companion paper [23].
Acceptor levels.—Electrically active point centers,

together with planar and linear defects, such as disloca-
tions, account for differences between devices fabricated to
be similar. However, steady and impressive progress in the
quality of molecular-beam-epitaxy-grown modulation-
doped III–V [24,25] and II–VI [26–28] heterostructures
has been achieved by increasing pumping efficiency and
improving chemical purity of constituting elements, which
points to the dominant role of background ionized donor
and acceptor impurities in epitaxial structures of those
compound semiconductors. Similarly, native acceptors in
bulk compound semiconductors have been frequently
assigned to metal vacancies giving double acceptors
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(Z ¼ −2) in II–VI materials, but the case of ZnTe and
CdTe indicates that residual charged impurities, such as
Cu (Z ¼ −1), are involved [29].
To describe charge dopant states in topological QWs, the

Kohn-Luttinger effective mass theory developed for accept-
ors in GaAs and HgTe QWs, taking into account four Γ8

valence bands (including spin) [30,31], is extended in this
Letter to the case in which also Γ6 and Γ7 bands are relevant
[32]. In the companion paper [23], we present an explicit
form of the wave functions that diagonalize the eight bands’
QW Hamiltonians without and with a charged impurity, as
well as examine the validity range of the axial approxi-
mation, employed routinely for acceptors in zinc-blende
QWs [30,31]. Within that approximation, the eigen-
functions are found to be labeled by eigenvalues of
Fz ¼ jz þ lz, where jz and lz denote the components
perpendicular to the QW plane of the angular momenta
corresponding to the Kohn-Luttinger amplitudes and the
associated envelope functions, respectively, confirming that
Fz commutes with axial eight bands’ Hamiltonians [33].
The resultant wave functions are mainly composed of
either p�1=2 and s�1=2 (jz ¼ �1=2) or p�3=2 (jz ¼ �3=2)
Kohn-Luttinger amplitudes, respectively, where ssz and pjz

transform under the point group operations like s and p
atomic orbitals. The corresponding binding energies of the
ground-state Kramers doublets are denoted E1=2 or E3=2

and are usually referred to as light and heavy hole accept-
ors, respectively.
Figure 1 depicts energies of relevant QW bands and

acceptor ground-state levels for a range of the HgTe QW
widths dQW with colors representing a fraction of the p�3=2
amplitude in the carrier wave function. Three distinct areas
are observed in Fig. 1(c): (i) normal band ordering (cation s
states above anion p states) at small dQW values, (ii) the
range of the topological phase transition centered around
the band gap Eg ¼ 0 and dc ≈ 5.8 nm, and (iii) the
topological region dw > dc, where the band ordering is
inverted, resulting in 1D topological gapless edge
states [3,5] to be discussed later. Such a band diagram is
generic for this class of 2D topological systems, however,
the value of dc depends on strain (set to zero here) and Cd
or Mn content in the barriers and well [16,23].
We note that the binding energies of the doubly ionized

acceptors Eð2−=−Þ are irrelevant for the low-energy physics.
In contrast, Eð−=0Þ levels, residing near band edges or in the
gap, are essential. They originate from either single accept-
ors (Z ¼ −1) or singly ionized double acceptors that, in the
mean-field approach, have the same binding energy as
single acceptors. As seen in Fig. 1(c), in the regions of
interest here (dQW ≈ dc and dQW > dc), the ground state
corresponds to the level E1=2 associated with the side
maximum of the valence band visible in Figs. 1(a) and 1(b).
Notably, the acceptor levels form a band, as the hole
binding energy depends on the location of the parent

acceptor impurity with respect to the QW center, as shown
in Fig. 1(c).
Within this model, the range of gate voltage correspond-

ing to sweeping over the band gap Eg at dQW > dc directly
provides the 2D areal density of relevant acceptorsNa, with
the experimental data implying Na ≈ 1011 cm−2 for
HgTe QWs [6,17], the value consistent with the areal hole
concentration in undoped QWs [34], and Na ≈ 1013 cm−2

for WTe2 [8]. The Na for HgTe QWs corresponds to the
three dimensional (3D) concentration of the order of
NA ¼ 3 × 1016 cm−3, a typical magnitude for bulk HgTe
[35] and Hg1−xMnxTe [36]. For such a concentration, the
holes are localized, as for the evaluated Bohr radius of
5 nm, the Mott critical concentration is 1.4 × 1017 cm−3.
Next, we demonstrate that the presence of acceptors
explains several hitherto puzzling properties of 2D topo-
logical insulators.
Region of topological phase transition.—One of the

rather surprising facts is that low-temperature electron
mobility μe in modulation donor-doped HgTe QWs dQW
barely reaches 0.4 × 106 cm2=Vs [6], whereas μe in bulk
HgTe as well as in Hg1−xCdxTe and Hg1−xMnxTe near

FIG. 1. Band structure and positions of acceptor levels in HgTe
QWs of different thicknesses computed with band structure
parameters given in Ref. [32]. (a),(b) Band energies E vs wave
vector k for unstrained QW thickness of 6 and 8 nm sandwiched
between Hg0.3Cd0.7Te barriers. Red rectangles depict the band
region displayed in (c). (c) Band edges and acceptor levels
(symbols connected by dashed lines vs QW thickness dQW).
Except for the orange circles computed for the doubly ionized
acceptor (Z ¼ −2), other symbols represent the single acceptor
(Z ¼ −1). The orange symbols (E3=2) correspond to acceptors
associated with the valence band around k ¼ 0; the blue symbols
(E1=2) with valence band side maxima visible in (a) and (b). Full
symbols represent the acceptors residing in the QW center; the
open symbols represent acceptors at the distances dQW=4, dQW=2,
and 3dQW=2 of the QW center. Colors represent the participation
of the p�3=2 Kohn-Luttinger amplitude in the wave functions.
The discontinuity in the orbital content occurring at k ¼ 0 and
Eg → 0 [see (a)], is blurred in (c) by contributions with k ≠ 0.
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the 3D topological transition approaches or exceeds
1 × 106 cm2=Vs [35–37] with the onset of the Shubnikov–
de Haas oscillations at 10 mT [36]. Even more surprisingly,
in the vicinity of the topological phase transition in 2DQWs,
the hole mobility μh is larger than μe [16,17], reaching
μh ¼ 0.9 × 106 cm2=Vs, for which the integer quantum
Hall effect (QHE) plateau is resolved in 50 mT in
Hg0.976Mn0.024Te [16], which is relevant for the QHE
metrology [17]. In addition, the QW hole concentration
evaluated from the Hall effect is significantly smaller than
the charge density generated by the gate voltage [16,17].
Figure 2 elucidates those findings using information

obtained from Fig. 1. In the 3D bulk case [Fig. 2(a)], as
previously discussed in detail [15], the acceptor band
resides in the conduction band. In addition, due to a small
electron mass value, we are on the metallic side of the
Anderson-Mott transition so that donors do not bind
electrons at any position of the Fermi energy EF. Now,
if the donor concentration ND ≪ NA, most of the acceptors
are neutral. Furthermore, under these conditions, to reduce
the Coulomb energy, only acceptors in close vicinity to
donors are ionized. The resulting dipole formation sub-
stantially reduces the electron scattering rate. Furthermore,
the presence of the Efros-Shklovskii Coulomb gap pre-
cludes resonant scattering. By fine hydrostatic pressure
tuning of the band structure toward the 3D topological
transition at Eg ¼ 0, μe ¼ 20 × 106 cm2=Vs was registered
in Hg0.94Mn0.06Te at 2 K [36].
The situation is entirely different at the topological phase

transition in the 2D case. As shown in Fig. 2(b), for the
Fermi level in the conduction band, obtained through
modulation donor doping, all acceptors are ionized,
explaining the low electron mobility. In contrast, in the

hole transport regime [Fig. 2(c)], achieved by gating-
induced discharging of acceptors, the aforementioned
charge correlation occurs, which, along with the small
effective mass of holes in the Dirac cone and the formation
of the Coulomb gap EC, results in high hole mobilities at
kBT < EC ≈ 0.5 meV [23]. However, with a growth of hole
density, the hole effective mass increases [see Fig. 1(a)] and
the hole mobility tends to diminish [16,17]. Interestingly,
higher carrier mobilities were observed in Mn-containing
samples [16,36] compared to the HgTe case. We note that
EC is enlarged by the acceptor bound magnetic polaron
(BMP) energy Ep, where for xMn ¼ 0.02, Ep > 0.3 meV at
T < 2 K [23]. Further systematic experimental investiga-
tions would help verify the resonant BMP model proposed
here. The presence of the Coulomb gap explains also a
large thermal stability of the QSHE in WTe2 [9,23].
Edge transport range.—Having elucidated the role of

acceptors in the region of the topological phase transition,
we focus on the region dQW > dc [Fig. 2(c)]. Here, the
Coulomb gap diminishes dc hopping conductivity.
However, since there is no Coulomb gap for electron-hole
excitations, the presence of the acceptor band explains the
origin of puzzling gap states detected by high-frequency
conductivity [18]. Moreover, under these conditions, one
can anticipate the appearance of the exchange interaction
Heh between spins of electrons in the topological edge
states s⃗ and paramagnetic acceptor holes j⃗.
To reveal the striking consequences of this suggestion, it

worth recalling that a long-range component of this
coupling originates from the third order perturbation theory
(second in kp and first in the Coulomb interaction),
for which the exchange energy J eh ∝ 1=E2

eh, where
Eeh represents the electron-hole energy distance [38].
According to the theory [19], which is quantitatively
verified for the interaction between photoelectrons at the
bottom of the conduction and holes on Mn acceptors in
GaAs [39], Heh assumes a scalar (Heisenberg) form,
Heh ¼ −J ehs⃗ · j⃗, where j ¼ 3=2 and J eh ¼ −0.23 eV
[19]. When Eeh ¼ 1.4 eV in GaAs:Mn, the lower bound
of Eeh is as small as EC ≈ 0.3 meV for the topological edge
electrons and acceptor holes. Hence, the antiferromagnetic
J eh is the largest relevant energy, and despite a small DOS
magnitude at EF in the 1D channels, drives the system to a
strong coupling limit of the Kondo effect [23], specified in
QWs by a wide distribution of Kondo temperatures TK . For
the parameter values specifying HgTe QWs, i.e., the
Fermi velocity vF ¼ 4 × 105 m=s and the penetration
length of the edge electron wave function into the QW,
b ¼ 5 nm, a broad distribution of TK values up to 100 K is
expected [23]. Importantly, for areal hole density
Nh ¼ 0.5 × 1011 cm−2, the number of edge electrons per
unit length for EF in the gap center ne ¼ Eg=2πℏvF ¼
12=μm is greater than the number of acceptor holes in the
edge region, nh ¼ Nhb ¼ 3=μm. In the case of double

FIG. 2. Schematic picture of carrier and acceptor bands at the
topological phase transition (Eg ¼ 0). (a) Bulk 3D case with the
Fermi energy pinned in the conduction band (CB) by acceptors
negatively charged below the Fermi level. Coulomb gap at EF is
also shown. (b),(c) The same for the 2D case and positions of the
Fermi level in the conduction band and the valence band (VB).
The acceptor band is wide, as the binding energy depends on the
acceptor location with respect to the QW center.
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acceptors, if Hund’s rule is obeyed, gating changes the
value of holes’ spin rather than nh.
Thus, we can quantitatively verify numerous theoretical

studies on the Kondo effect in QSHE materials
[20,21,40,41] and on the role of exchange anisotropy that
allows for net backscattering of edge electrons [21,40,42].
It worth noting in this context that, for transition metal
impurities such as Mn, TK ≪ 1 mK in HgTe QWs and the
exchange anisotropy vanishes if the transition metal is an
orbital singlet state [23].
In general, the exchange Hamiltonian between pseudo-

spins of edge electrons s ¼ 1=2 and acceptor holes j ¼ 1=2
assumes a formHeh ¼ −

P
α;β sαJ

ðα;βÞjβ, where J ðα;βÞ is a
real tensor, whereas α and β refer to the vector components
x, y, z. It is convenient to introduce the notation J α ¼
J ðα;αÞ for α ¼ β and if α ≠ β, J ðsÞ

α;β ¼ ðJ ðα;βÞ þ J ðβ;αÞÞ=2
and Dα ¼

P
β;γ ϵαβγJ

ðβ;γÞ=2, where Dα are vector compo-
nents of the Dzyaloshinskii-Moriya contribution and ϵαβγ is
the antisymmetric Levi-Civita tensor. If axial symmetry is
maintained, the group theory implies J x ¼ J y, J yz ¼ 0,
Dx ¼ 0. In such a situation, only spin flop (⇑↓⇆⇓↑)
transitions are allowed, which precludes net backscattering
in the spin-momentum locking case, as sketched in Fig. 3
[21,40,42]. Since, however, the edge breaks the axial
symmetry and a random distribution of holes breaks the

inversion symmetry, there appear anisotropic contributions
J an of the form J x − J y, J yz, and Dx. The presence of
such spin nonconserving terms ensures the leak of electron
angular momentum to crystal orbital momentum in a chain
of scattering events and, thus, leads to net backscattering of
edge electrons [21,40,42]. The resulting backscattering
rate, compared to the conventional spin dephasing
rate γs, is reduced by a factor r, so that γb ¼ rγs, where
r ¼ ½2J an=ðJ x þ J yÞ�2 [21,42].
Using γs determined by Wilson’s numerical renormal-

ization group approach for 1D systems in the Kondo
regime [22], and noting that the topological protection
length Lp ¼ vF=γb, we arrive at the main result of this
Letter,

L−1
p ¼

X

i

rðiÞfðT=TðiÞ
K Þ=Lx; ð1Þ

where the summation is over all QW holes bound
to acceptors for a given gate voltage Vg. The function
FðxÞ ¼ 1 for x ¼ 1, it decays to zero for x → 0, and slowly
decreases with x for x > 1 [for x ¼ 0.2 and 10, FðxÞ ¼ 0.5
and 0.6, respectively] [22]. The r value is not universal,
but varies with the hole position with respect to the
edge and QW center. To estimate Lp, we adopt [23] Nh ¼
0.5 × 1011 cm−2, an average value of rðiÞ as rDx ¼ 0.13, the
cutoff length beyond which strong coupling of holes and
electrons tends to vanish yc ¼ 2b ¼ 10 nm, and an
average value of fðT=TKÞ ¼ 0.4. These numbers lead
to Lp ¼ 4 μm, the order of magnitude consistent with
experimental findings [5,14,43]. A more elaborated
approach [23] provides conductance values and temper-
ature dependence GðTÞ that agree with experimental
observations, if the influence of Luttinger correlation
effects upon r [44] is taken into account.
Equation (1) implies that L−1

p scales linearly with Nh.
This fact explains a 2 orders of magnitude longer
Lp in HgTe QWs [5,14,43] compared to 1T0-WTe2 2D
monolayers [8,9], as gating experiments point to corre-
spondingly different acceptor concentrations in these two
systems Na ¼ 1011 and 1013 cm−2, respectively [6,8,17].
Furthermore, a small number of relevant acceptor holes
leads to reproducible resistance fluctuations [5,7–9]. At the
same time, a decrease of conductance seen in scanning gate
microscopy experiments [34] results from a local increase
in the number of acceptor holes in the edge region.
Filamentary charging and discharging of barrier acceptors
under a strong gate electric field may account for hystereses
and irreversibilities in low-temperature transport properties
when cycling the gate voltage [7,14].
An unexpected appearance of quantized resistance below

0.3 K in a Hg0.988Mn0.012Te QW [7] can be elucidated
using the acceptor model by spin splitting Δ of hole states
originating from the BMP effect, as for x ¼ 0.012, Δ >
kBT at T < 3.5 K [23]. Interestingly, the existing theories

FIG. 3. Destructive role of charge dopants in the quantum spin
Hall effect. If axial symmetry is maintained (J x ¼ J y, J yz ¼ 0,
Dx ¼ 0) only spin-flop (⇑↓⇆⇓↑) transitions occur (case 1 in the
figure), so that edge current is conserved in the spin-momentum
locking situation. Note that arrows up and down refer to time
reversal partners rather than to spin up and down. However, if
exchange interaction is anisotropic, ⇑↑⇆⇓↓ transitions that
violate pseudospin conservation are also allowed (case 2), leading
to net backscattering after a chain of spin-dependent interactions
of electrons with an acceptor. For realistic concentrations of
charge dopants, backscattering is efficient in the strong coupling
limit of the Kondo effect.
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on the disappearance of the Kondo effect in a magnetic field
assume the same Δ for the impurity and band states [45],
which is not the case in the presence of BMPs.
Conclusions and outlook.—The proposed impurity band

model can elucidate the critical properties of QSHE
materials. In addition to controlling carriers’ densities
and mobilities, the charge dopants enlarge the spin Hall
plateau width, but diminish the quantization precision.
However, the resistance quantization accuracy can be
recovered by doping topological QWs with isoelectronic
magnetic impurities, as the formation of the bound
magnetic polarons weakens the Kondo effect. Similarly,
impurities with a negative value of Hubbard’sU can pin the
Fermi level in the gap, but will not contribute to back-
scattering, provided two trapped carriers form a spin
singlet. Even if such DX− or AXþ centers are unstable
under ambient conditions [46], fast gate sweeping, light, or
hydrostatic pressure might serve for their activation [47].
In this Letter, the model’s quantitative predictions have

been compared to experimental data on HgTe and
Hg1−xMnxTe QWs as well as on 1T0-WTe2 2Dmonolayers,
however, it would be interesting to verify the model in the
case of other QSHE candidate materials, such as α-Sn and
Bi films, other 2D monolayers, and Heusler compounds
with an inverted band structure. More generally, while
electrostatic gating is widely used to reveal the unique
properties of quantum materials, the results presented here
demonstrate that charge dopants play an important and
unanticipated role in the physics and applications of
topological semiconductors. Finally, we mention that our
theory has been limited to the Ohmic range. A pallet of
new phenomena is expected beyond the linear response
regime [44,48,49].
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