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Weakly collisional and collisionless plasmas are typically far from local thermodynamic equilibrium
(LTE), and understanding energy conversion in such systems is a forefront research problem. The standard
approach is to investigate changes in internal (thermal) energy and density, but this omits energy conversion
that changes any higher-order moments of the phase space density. In this Letter, we calculate from first
principles the energy conversion associated with all higher moments of the phase space density for systems
not in LTE. Particle-in-cell simulations of collisionless magnetic reconnection reveal that energy
conversion associated with higher-order moments can be locally significant. The results may be useful
in numerous plasma settings, such as reconnection, turbulence, shocks, and wave-particle interactions in

heliospheric, planetary, and astrophysical plasmas.
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Energy conversion is largely well understood for systems
with initial and final states in or near local thermodynamic
equilibrium (LTE) [1,2]. However, energy conversion in
systems far from LTE, such as weakly collisional or
collisionless plasmas endemic to many space and astro-
physical environments, remains a forefront research
area [3.,4].

For a species ¢ not in LTE, internal moments of the
phase space density f, are defined as f, multiplied by
powers of components of v/, and integrated over all velocity
space. Here, the random velocity is v, = v —u,, velo-
city space coordinate is v, bulk flow velocity is u, =
(1/n,) [ f,vd’v, and number density is n, = [ f,d°v. A
standard approach to study energy conversion in plasmas
[5-27] centers on the first few internal moments.
Compressional work describes changes to n,, i.e., the
zeroth internal moment of f,, described by the continuity
equation [5,28]. The internal energy per particle
Eoint = (3/2)kpT ,, ie., the second internal moment of
[, divided by n,, can change due to compressional heating
by work —P,(V -u,), incompressional heating via the
remainder of the pressure-strain interaction (called Pi-D
[5]), heat flux, or collisions, according to [2,5,28]

3 4T, .
EnakBW = _(Pa : V) Uy — V. q, + naQa.coll,inter' (1)

0031-9007/23/130(8)/085201(9)

085201-1

Here, the elements of the pressure tensor P, are
P, = mﬁfv;jv’akfgd%, temperature tensor is T, =
P,/n kg, effective pressure is P, = (1/3)tr[P,], effective
temperature is 7, = P,/n.kg = (m,/3n.kg) [v2f,d*v,
vector heat flux density is q, = [(1/2)m, vV, f,d*v,
and volumetric heating rate per particle due to inter-
species collisions is Qy cotiner = (1/74) [(1/2)m,v2x
>y Cinterlfo» fo]d>v, where the interspecies collision
operator is Ciyerlfs» o], kg 18 Boltzmann’s constant, m,,
is the constituent mass, and d/dt = d/dt +u, - V is the
convective derivative.

There is an energy conversion channel beyond those
discussed thus far. f, has an infinite number of internal
moments that are all treated on equal footing. While Eq. (1)
includes the impact of off-diagonal pressure tensor ele-
ments and heat flux on &,;,, any energy conversion
associated with time evolution of all other internal moments
themselves is not contained in the continuity equation
or Eq. (1).

Studies have addressed time evolution of other moments
and their contribution to energy conversion. The evolution
of anisotropic pressures has been studied [12,14,29-36].
Other approaches capture the effect of all moments of f,,.
Linearizing f, around its equilibrium in kinetic theory and
gyrokinetics reveals the so-called free energy [37-39],
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which quantifies non-LTE energy conversion into mechani-
cal or magnetic energy [37]. It is associated with the phase
space cascade of entropy that can lead to dissipation [40].
The velocity space cascade has been studied without
linearizing f, [17,41-43]. In another approach, changes
to bulk kinetic energy are quantified kinetically using field-
particle correlations [44-53].

In this Letter, we use a first-principles theory to quantify
energy conversion associated with all internal moments.
We show this energy conversion is physically associated
with changing the velocity space shape of f,. There are
three important ingredients. First, the key quantity is kinetic
entropy [2,54-57] rather than energy. Second, we employ
the decomposition of kinetic entropy into position and
velocity space kinetic entropy [58,59]. Third, we employ
the so-called relative entropy [55,56,60]. Our analysis was
performed independently, but we found it is similar to
treatments in chemical physics of dilute gases [55] and
quantum statistical mechanics [61]. The novelty of our
analysis stems from using the decomposition of kinetic
entropy and significant differences in interpretation than in
previous work. We employ a particle-in-cell (PIC) simu-
lation of collisionless magnetic reconnection, revealing
energy conversion associated with higher-order moments
can be locally significant.

We first derive an expression for the rate of energy
conversion associated with non-LTE internal moments of
f &> emphasizing departures from the treatment in Ref. [55].
We assume a classical (nonrelativistic, nonquantum) three-
dimensional (3D) system of infinite volume or in a
thermally insulated domain with a fixed number N, of
monatomic particles. The kinetic entropy density s, asso-
ciated with f, is [62]

A3r A3
o= ks [ fgln(]#y%, 2)

where the integral is over all velocity space, and A*r, and
A3p, are position space and velocity space volume ele-
ments in phase space, respectively [59,63,64]. In the
comoving (Lagrangian) frame, s, evolves according to
([55] and Supplemental Material Sec. A [65])

d So V. ‘7(7 th jrrcoll
2 (2e A _ Zocoll 3
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where J 4 1s thermal kinetic entropy density flux and
§4.con 18 local time rate of change of kinetic entropy density
through collisions, defined in Egs. (S.4) and (S.3) [65],
respectively. We note that Eq. (3) has no explicit depend-
ence on body forces including gravitational and electro-
magnetic forces, which implies they do not directly change
internal moments of f,. Equation (1) exemplifies this for
the special case of internal energy.

In a key departure from Ref. [55], we decompose kinetic
entropy density s, into a position space kinetic entropy
density s,, and velocity space kinetic entropy density s,
with s, = 5,, + S5, as [58,59]

n,,A3r,,
Sop ——k3n61n< N >, (4a)

(o2

3
Sy = —kp / f.1n (fji”> B (4b)

(o2

A direct calculation (see Supplemental Material
Secs. B-D [65]) of the terms on the left side of Eq. (3)
using Egs. (4a) and (4b) gives

d (55 1 aWw,

5(11_5) T, dr (52)
d Sop _ 1 dga,int d Sav,rel

dt(n,,) T, dt Jrdt( n, )’ (50)
V. Jd,th _ 1 an (v ) Jo‘,th)rel

(5¢)

N, T_g dt ng,

where dW, = P,d(1/n,) is the compressional work per
particle done by the system, d&,;, = (3/2)kpdT, is the
increment in internal energy per particle, and dQ,/dt =
[-V-q,— (P, V) -u,+ P,(V-u,)]/n, is the (thermo-
dynamic) heating rate per particle from sources other than
compression that can change the effective temperature [see
Eq. (1)]. Finally, s,, is the relative entropy density and
(V- T o) is the thermal relative entropy density flux
divergence, given by

Soprel = _kB/fo' In <ff;>d3l), (6)

V- Tewda = ks [ 9 (g (L2 )ew )

oM

and the “Maxwellianized” phase space density f,;, asso-
ciated with f,_ is [60]

3/2
fD‘M = no_< mo‘ ) e_ma(v_ua)2/2kBTzr’ (8)

27'[](370-

where n,, u,, and 7, are based on f . (Reference [55] used
a more general reference phase space density than f,,,, so
our choice is a special case of theirs.)

Equations (5a)—(5c) have important implications, and
our interpretation greatly departs from Ref. [55]. Ignoring
the relative terms in Eqgs. (5b) and (5¢), we see Eq. (3)
(scaled by the effective temperature) inherently contains
information about work, internal energy, and thermo-
dynamic heat as captured by the continuity equation and
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Eq. (1). This suggests the relative terms describe energy
conversion associated with all internal moments beyond the
second moment.

We therefore define increments of relative energy per
particle d&, . and relative heat per particle dQ, . by

dgrr,rel -7 d(sav,rel/nﬂ)

dt ‘ dt ’ (%)
an rel (v : \70' th) 1
rel _ _ threl
i o (9b)

Further defining energy increments per particle in all
internal moments at and above the second moment as
A&, gen = dEqjn + dE, e and generalized heat per particle
as dQ; gen = dQ, + dQ; a1, Eqs. (3)—(5¢), (9a), and (9b)
take on the simple form

AW, dEseen  dQpeen -
dt + dlg = dlg +Qz(r,collv (10)

where chou =T ;$5con/Ns- Equation (10) generalizes
Eq. (1), which contains energy conversion associated with
only density and effective temperature, as opposed to all
internal moments of f,. This interpretation is a significant
departure from Ref. [55].

We now provide a physical interpretation, which requires
understanding energy conversion via its impact on f,.
Work per particle dW, = P,d(1/n,) changes the zeroth
moment of f. This is depicted graphically in Fig. 1, where
two velocity space dimensions of f, are sketched. The top
row shows a process taking a Maxwellianized f,; from an
initial to final state. The intensification of colors denote a
change in f, and therefore n,. Similarly, d€,;, is asso-
ciated with changes to the second internal moment of f,
depicted in the second row of Fig. 1 for a process that

Initial f,

O0—-0

Final f, Physics

Change of Density AW,
(Work) dt

Change of Temperature d&y int
(Internal Energy) dt

dgo',rcl

Change of Shape of f, @Ca,rel
dt

(Relative Energy)

0=

FIG. 1. Schematic showing energy conversion channels accord-
ing to their impact on the phase space density f,. The initial f, is
depicted as Maxwellian for illustrative purposes on the left. The
final f, is to their right. The descriptions of the changes in f, are
to their right.

increases &,y 1.e., the Maxwellianized f, spreads in
velocity space.

To interpret d&, ;, Eq. (6) shows s, . vanishes if f, is
a Maxwellian (f, = f,y) [60]. Thus, d&,,, describes
non-LTE physics. Since a Maxwellian is the highest
kinetic entropy state for a fixed N, and &, [54],
d(Ssypre1/ns)/dt > 0 implies f, evolves toward Max-
wellianity in the comoving frame, associated with
d€, e > 0, while d(s,,e1/n,)/dt <0 implies f, evolves
away from Maxwellianity and d€,. <0. A process
changing the shape of f, is depicted in the third row of
Fig. 1, where f,, is initially Maxwellian and finally it is not.

A concrete example showing that d&, . is associated
with f, changing shape is provided in Supplemental
Material Sec. E [65]. d&, . is calculated analytically for
a bi-Maxwellian distribution with converging flow. It is
shown that the evolution of f, is consistent with the
interpretation in the previous paragraph.

Collisions directly change the shape of f,, so d&,
includes irreversible contributions if collisions are present.
However, since f, can change shape even in the perfectly
collisionless limit, d&, ., also contains reversible effects.
Thus, the term is not purely irreversible as previously
suggested [55].

dQ,, describes non-Maxwellian features of f, that cause
a flux of energy per particle that changes 7, [see Eq. (1)].
dQ, 1 is analogous: non-Maxwellian features in higher-
order internal moments produce a flux that modifies
internal moments of f, other than n, and 7. Qmo“
describes both intra- and interspecies collisions, as opposed
to solely interspecies arising in Eq. (1). This is because both
collision types can change higher-order internal moments
of f,, while elastic intraspecies collisions conserve energy.

We demonstrate key results of the theory using simu-
lations of reconnection. Data are from the simulation in
Ref. [27]. The code and numerical aspects are discussed
there and in Supplemental Material Sec. F [65]. The out-of-
plane current density J, around a reconnection X line at
(xg, yo) is in Fig. 2(a), with reversing magnetic field lines in
black and electron streamline segments in orange, revealing
typical profiles.

We first confirm relative energy changes are related to f,
evolving toward or away from LTE. Figure 2(b) shows the
electron entropy-based Kaufmann and Paterson non-
Maxwellianity M, xp = (s.47 — 5.)/[(3/2)kgn,] [63,89],
where s, comes from Eq. (2) based on f,, while s,
comes from Eq. (2) based on f,;, in Eq. (8). It is a measure
of the temporally and spatially local departure from LTE.
Figure 2(e) is the rate of relative energy per particle
d€, .1/dt. Figures 2(1)-2(1) are reduced electron phase
space densities f,(v,, v.) at the four color-coded X’s along
a streamline in Fig. 2(b).

M, xp and d€, ./ dt together reveal whether f, is locally
in LTE [Fig. 2(b)] and whether it is evolving toward or
away from LTE [Fig. 2(e)]. Just upstream of the electron

085201-3



PHYSICAL REVIEW LETTERS 130, 085201 (2023)

YY,
SOPRRRO oo PR OO K
ocubucuiohohicn

YYo

YYo

YYo

YY,

-1
1
1
0
0

-0

-1

-1
1
1.
0.
0.

-0.

-1.

-1.
1.
1.
0.
0.

-0.

-1.

-1.

0
5
0
5
0
5
5
0
5
0
5
(1]=
5

0.06 -
0.04-}(gj

0.02
0.00 =

. L —dW,/dt
0.02. a7 ix/lt/dt
e, rel

L \: £ I | vl i L ]
2 -1.5-1.0-05 0.0 0.5 1.0 1.5
X-X0 y-yo
x x-Xx,=0,y-y,=-0.15

T 0.048

0)

0.040

0.032

0.024

0.016

0.008

0.000

FIG. 2. Electron energy conversion in a PIC simulation of magnetic reconnection. (a) Out-of-plane current density J, with projections
of magnetic field lines and segments of electron velocity streamlines overplotted in black and orange, respectively. (b) Electron entropy-
based non-Maxwellianity Myp . Time rates of change per particle of (c) work dW,/dt, (d) internal energy d€, ;,/dt, and (e) relative
energy d&, o/ dt. (£) logo[|(dE, 1/ dt)/(dE, 1t/ dt)|]. 1D cuts of the terms in (c)—(e) in the (g) x and (h) y directions. (i)—(1) Reduced
electron phase space density f,(v,, v.) at locations denoted by the colored X’s at the top left of the plots corresponding to the X’s in

(b) along a streamline.

diffusion region (EDR) (Jx —x(| < 1,045 < |y —yo| < 1),
electrons get trapped by the upstream magnetic field [34],
so f, becomes non-Maxwellian [dark red in Fig. 2(b)], with
f. elongated in the parallel direction [Fig. 2(i)]. Thus, in the
comoving frame, as a fluid element convects toward the X
line from upstream, f, evolves away from Maxwellianity,
consistent with Fig. 2(e), where d€, ,;/dt < 0. Continuing
toward the X line, f, develops striations [Fig. 2(j)] due to
electrons becoming demagnetized in the reversed magnetic
field [90,91]. This is associated with evolution away from
LTE [blue in Fig. 2(e)]. Downstream of the X line, there is a
red patch in Fig. 2(e) at |x — x| 2 1.25, |y — yo| = 0 where
electrons thermalize (Maxwellianize) [92,93], which is
seen in f, [Fig. 2(k)]. Just downstream from there
(|x = xo| = 1.8), f. evolves away from LTE where electrons
begin to remagnetize at the downstream edge of the EDR
[92,94] [Fig. 2(1)]. These results confirm the sign of d&,
identifies whether f, changes shape toward or away from
LTE in the comoving frame.

Next, we demonstrate the quantitative importance of
relative energy. Rates of work and internal energy per
particle are shown in Figs. 2(c) and 2(d), respectively.

Cuts of these quantities through the X line in the horizontal
and vertical directions, along with d&, ./ dt, are plotted in
Figs. 2(g) and 2(h), respectively. At the X line, the values
are 0.031, 0.027, and —0.016, respectively, in normalized
code units. Their sum, 0.042, is the total rate of energy per
particle going into internal moments of electrons. To see
that relative energy is important, the standard approach
using Eq. (1) would say the energy rate going into changing
n, and 7, is 0.031 4 0.027 = 0.058, 38% higher than the
total rate when relative energy is included, which is a
significant difference.

To assess its importance in other locations, Fig. 2(f) shows
logo[|(dE, re1/dt)/ (dE, i/ dt)|], with a color bar saturated
at +2 to better reveal details. Where internal and relative
energy changes are comparable are white. Locations where
|dE, | exceeds |dE, | are red, especially just upstream of
the EDR. In the deep blue regions, |d&, | < |dE, jn|- Inthe
light blue regions, including much of the EDR and island,
|d€, 11| 1s at least 20% of the magnitude of |d€, ;|. Thus,
energy conversion associated with non-LTE internal
moments in reconnection is broadly non-negligible and
can be locally significant or even dominant.
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We conclude with implications of the present results.
First, the theory applies for systems arbitrarily far from
LTE, so it could lead to significant advances compared to
manifestly perturbative theories [1,2,39]. An extensive
comparison to previous work is in Supplemental
Material Sec. G [65]. For a physical process that changes
both internal energy and higher-order moments, the theory
captures both and allows each to be calculated separately.
Since the theory contains all internal moments of f,, it
overcomes the closure problem.

It is important to note that internal energy per particle
E,.int 18 a state variable, meaning it is history independent,
but relative energy per particle &, . is not [see Eq. (92)].
Only in special cases can relative energy per particle &,
be calculated from f, at a particular time. Rather, only the
increment d€, ., has an instantaneous physical meaning.
This was pointed out in Ref. [55] and used as motivation to
not employ relative entropy per particle because they
sought a thermodynamic theory of irreversible processes.
Our interpretation is distinctly different; we argue relative
energy per particle not being a state variable reflects the
physical consequence that changing the shape of f, is
typically history dependent. Thus, a description retaining
this history dependence is crucial for quantifying energy
conversion into non-LTE internal moments.

Our results reveal that the standard treatment of energy
conversion in Eq. (1) needs to be expanded to accurately
describe energy conservation when not in LTE. Since
Eq. (1) is equivalent to the first law of thermodynamics,
we argue Eq. (10) is its kinetic theory generalization, which
we dub “the first law of kinetic theory.”

A flow chart depicting energy conversion in non-LTE
systems is in Fig. 3. Black arrows denote energy conversion
contained in thermodynamics, namely, conversion between
heat, work, and internal energy, plus collisions. Red arrows
are for relative energy and heat associated with non-LTE
internal moments of f,;. The dashed light blue arrow de-
notes coupling between relative energy and thermodynamic
heat through the vector heat flux density and Pi-D.

We expect the results to be useful when f is reliably
measured, such as PIC and Vlasov or Boltzmann plasma
simulations and satellite observations [95,96]. Satellites
measure f, with spatiotemporal resolution sufficient to take
gradients [97,98] and compute kinetic entropy [64]. The
theory may advance efforts using machine learning to
parametrize kinetic corrections to transport terms in fluid
models [99]. Generalizations of the present result may be
useful beyond plasma physics, such as many-body astro-
physics [100], micro- and nanofluidics [101,102], and
quantum entanglement [61].

There are limitations of the present work. Each restric-
tion to the theory listed before Eq. (2) could be relaxed.
Relative energy describes energy conversion associated
with all non-LTE internal moments, but does not identify
which of the individual non-LTE internal moments

dWo- dg en d o,gen =
+ 2B = < 8 + Qa,coll

dt dt dt
Generalized Heat dQ, gen

Collisions

Generalized work
(Oth moment of f,)

FIG. 3. Sketch illustrating energy conversion from Eq. (10).
Arrows show conversion channels between work (blue), heat
(pink), energy (orange), and collisions (green), with standard
channels in black and relative channels in red. The light blue
dashed arrow signifies how the relative terms couple to thermo-
dynamic terms.

contribute; it would be interesting to address this in future
work, likely in context of recent theories of the velocity
space cascade [41] and/or Casimir invariants [103]. There
are settings for which f;, is not the appropriate reference
for f, [104,105]. Reference [55] employs a more general
reference f, than we use here; it would be interesting
to generalize the results for more general plasma-
relevant forms.

The data used in Fig. 2 are publicly available from the
Zenodo repository [106].
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