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The propagating density gradients of a plasma wakefield may frequency upshift a trailing witness laser
pulse, a process known as “photon acceleration.” In uniform plasma, the witness laser will eventually
dephase because of group delay. We find phase-matching conditions for the pulse using a tailored density
profile. An analytic solution for a 1D nonlinear plasma wake with an electron beam driver indicates that,
even though the plasma density decreases, the frequency shift reaches no asymptotic limit, i.e., is unlimited
provided the wake can be sustained. In fully self-consistent 1D particle-in-cell (PIC) simulations, more than
40 times frequency shifts were demonstrated. In quasi-3D PIC simulations, frequency shifts up to 10 times
were observed, limited only by simulation resolution and nonoptimized driver evolution. The pulse energy
increases in this process, by a factor of 5, and the pulse is guided and temporally compressed by group
velocity dispersion, resulting in the resulting extreme ultraviolet laser pulse having near-relativistic
(a0 ∼ 0.4) intensity.
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The many applications of bright, coherent extreme
ultraviolet (XUV) light have motivated substantial interest
in source development, such as the construction of XUV
wavelength free electron lasers such as FLASH [1] as well
as nonlinear frequency mixing [2], high harmonic gen-
eration [3], relativistic flying mirrors [4–6], and XUV
lasing [7], to name a few. Another method for generating
short-wavelength radiation is “photon acceleration” [8,9];
the linear, unmagnetized plasma dispersion relation
ω2 ¼ k2c2 þ ω2

p, where ω2
p ¼ e2n=meε0 for a plasma of

number density n, results in the “quasiphotons” gaining an
effective mass ℏωp=c2 by analogy with the relativistic
energy-momentum relation for particles with mass. In the
presence of copropagating density gradients, the quasi-
photons experience local frequency shifts due to spatio-
temporal variations in the phase velocity and are, therefore,
accelerated (i.e., experience an increase in group velocity).
The resulting quasiphoton phase space trajectories in
plasma wakefields are similar to those of leptons [10].
Photon acceleration can arise as a result of plasma

wakefields [8], ionization fronts [11,12], and even using
metamaterials [13] and was measured in ionization front
[14] and laser wakefield acceleration experiments [15,16].
Recent results include cascaded sequences of localized
ionizations [17], resulting in large frequency shifts and the
use of plasma wakes to downshift radiation to very long
wavelengths [18]. Limits to photon acceleration in plasma
wakefields in the linear [19] and nonlinear regimes [20]
were previously studied, identifying dephasing of the
photon beam with respect to the accelerating refractive
index gradient placing a ceiling on the frequency shift.
Dephasing occurs when the difference between the phase
velocity of the wake and the high-frequency photon pulse

results in it slipping out of the accelerating refractive index
gradient. A recent scheme for overcoming this restriction
using an ionization front is dephasingless frequency shift
using a “flying focus,” a combination of a chirped laser
pulse and an achromatic lens for spatiotemporal shaping of
a laser pulse [21]. The flying focus was also used to
mitigate the analogous process of electron beam dephasing
in a plasma wakefield [22], in addition to related spatio-
temporally structured focusing schemes [23,24].
Another method for mitigating dephasing in the context

of electron acceleration is the use of tailored plasma density
ramps [25–28]. By having a nonuniform density, the
plasma wavelength varies along the propagation length,
which allows for locking the accelerating phase with the
particle beam. Tailored density ramps were previously
suggested as a way of increasing the frequency shifts in
photon acceleration [8,19].
In thisLetter,wedevelop an analyticmodel for dephasing-

less photon acceleration in the nonlinear plasma wake
regime, based on a tailored plasma density profile. The
model shows that if a wake can be sustained for arbitrary
distance, there is formally no limit to the frequency shift
achievable. The 1Dmodel is verified by comparisonwith 1D
particle-in-cell (PIC) simulations and used to design the
density profile for quasi-3D PIC simulations for a broad
driver beam, which demonstrates a frequency upshift of an
800 nm witness laser pulse up to 80 nm (Fig. 1). The pulse
experiences net energy gain of 5× to 250 mJ and is com-
pressed, leading to an ultrashort pulse ofXUV radiationwith
near-relativistic intensity, i.e.,a0 ¼ eE0=mecω0 → 1,where
E0 is the peak field of the witness pulse.
A laser pulse that experiences a comoving plasma

density gradient will be upshifted in frequency. From
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eikonal solutions to the wave equation, well-known ray-
tracing (photon kinetic) solutions can be used for the
temporal variation in the light [9,29,30] to relate it to
the density gradients generated in a wakefield. We assume
that the laser pulse is propagating in a wakefield generated
by a relativistic driver (either a relativistic particle beam or
second laser pulse) propagating at velocity vdðzÞ and,
therefore, changes coordinates from ðx; y; z; tÞ to
½x; y; z; ζ ¼ t −

R
z
0 dz

0=vdðz0Þ� [26]. For a given dispersion
relation D, the frequency of an optical mode ω propagating
in the z direction with wave number kz will vary with
distance propagated z as

dω
dz

¼ ∂D=∂ζ
∂D=∂kz

: ð1Þ

For example, for linear plasma dispersion,
D ¼ ω2 − ω2

p=γ − k2c2, and, assuming that ions are immo-
bile and the variations in the plasma density with respect to
ζ are much larger than the variations in ω and k and can be
ignored,

dω
dz

≃
1

2kzc2
∂ðω2

p=γÞ
∂ζ

: ð2Þ

Note that the γ factor in the linear dispersion relation
is to allow for relativistically streaming electrons rather
than, e.g., oscillations in the laser field, and, therefore,
this dispersion relation is considered exact for a weak
laser pulse.
For positive frequency shift, the laser pulse must be at a

phase in the wake where the density gradient is positive
with respect to ζ (Fig. 1). However, the laser centroid
moves at the group velocity of the laser pulse, and so, as the
laser pulse shifts in frequency, its group velocity increases
and the pulse will change position in the wake. To mitigate
dephasing of the photon pulse, we use a tailored density
profile (similar to that proposed for mitigating dephasing in
electron acceleration [26,28,31,32]) to continuously
increase the plasma wavelength and keep the laser pulse
experiencing a positive plasma density gradient (Fig. 1).
For convenience, we choose the point where the density

perturbation in the wake is zero, δn ¼ 0, within the positive
gradient region, hereby labeled as ζδ, as the location of the
reference density gradient we are trying to track. This is not
the maximum density gradient except in the linear regime,
but the maximum is, in general, slightly behind ζδ, and
using ζδ simplifies the analysis. It can be shown that the
maximum refractive index gradient occurs where the
electric field of the wake is zero, which is close to where
the density perturbation goes to zero. It can also be shown
that the refractive index gradient is equal to the density
gradient at the point where δn ¼ 0 for a 1D wake.
To keep the pulse experiencing the greatest possible

frequency shift, we require ζcentroid ¼ ζδ for all times,
where ζcentroid denotes the center of the witness laser pulse
or, expressed in differential form,

dζcentroid
dz

¼ dζδ
dz

⇒
1

vcentroid
−

1

vd
¼ dζδ

dn
dn
dz

: ð3Þ

The quantity n refers to the unperturbed plasma density
ahead of the driver and is a function of z. For an
ultrarelativistic particle beam driver, we make the approxi-
mation vd → c. Assuming that the laser pulse moves at the
linear group velocity and the plasma is underdense,
ω2
p=ω2 ≪ 1, we obtain an equation relating the z profile

of the plasma number density to the variation in the wake
position of the zero density perturbation ζδ with plasma
density:

dn
dz

≃
1

2c

ω2
p

ω2

�
dζδ
dn

�
−1
: ð4Þ

Note that γðζδÞ ¼ 1, where the density perturbation is zero.
Here, we derive the phase-matching condition for a one-

dimensional (1D) nonlinear plasma wake, which we find is
also accurate to describe the three-dimensional case for a
broad driver (kpσr ≫ 1), where kp ¼ ωp=c and σr is the
root-mean-square beam radius. Under the assumption that

(a)

(d)

(b) (c)

FIG. 1. Schematic for phase-matched photon acceleration.
(a) [(d)] Analytic wakefield behind beam driver at the start
(end) of the (c) phase-matching density profile. (b) Analytically
calculated plasma wake density (color plot) with density gradient
matching witness pulse centroid group delay.
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d logðnÞ=dz ≪ kpðzÞ for all z—i.e., the plasma density
gradients are long compared to the wake period scale—to
lowest order the wake may be assumed to follow the
uniform plasma solution with local density nðzÞ. Hence,
we write the perturbed density of the wake nwðζ; zÞ as
a function of ζ parametrized by z, i.e., by the local
density nðzÞ.
For clarity, we express the equations in normalized units,

with n → n=n0 and nwðζ; zÞ → nwðζ; zÞ=n0, where we
use n0 as a reference plasma density, ωp → ωp=ωp0,
ω → ω=ωp0, p → p=mec, etc., where ωp0

2 ¼ e2n0=meε0.
Solutions for a plasmawake generated by a square temporal-
profile beam driver in a uniform density plasma may be
expressedparametrically [33,34] such that the amplitude and
the starting phase of thewake behind the driver are functions
of the drive beam density nd, length τd, and the unperturbed
plasma density n. The amplitude is described by the
maximum Lorentz factor γm ¼ 1 − ndϕd, where ϕd is
the electrostatic potential at the end of the drive beam.
The starting phase of thewakebehind the driver is defined by

tanφst ¼
−Ed

pd

ffiffiffiffiffiffiffiffiffiffiffiffi
γd − 1

2

r
; ð5Þ

where Ed, pd, and γd are the electric field, momentum, and
Lorentz factor of the plasma at the end of the drive beam,
respectively. These quantities are obtained from solutions to
the fluid equations with the drive beam density included
[34]. The position ζδ, measured from the leading edge of the
drive beam, may be expressed as

ζδ ¼ ζð3π=2Þ − ζðφstÞ þ τd; ð6Þ

where ζðφÞ is the position in the undrivenwake as a function
of a periodic parametric coordinate φ, with φð0Þ corre-
sponding to a density maximum. The function ζðφÞ is
defined implicitly by ζðφÞ ¼ ð2=κ0ÞEðφ; κÞ − κ0Fðφ; κÞ−
ð2κ=κ0Þ sinφ, where Fðϕ; κÞ and Eðφ; κÞ are elliptic
integrals of the first and second kind, respectively,
κ2 ¼ ðγm − 1Þ=ðγm þ 1Þ, and κ02 ¼ 1 − κ2. Hence, the
change in the location of the phase-matched refractive
index gradient used in Eq. (4), dζδ=dn, is defined implicitly
using Eqs. (5) and (6). The plasma wake density gradient at
ζδ is given by

∂nw
∂ζ

����
ζ¼ζδ

¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½γm − 1�

p
: ð7Þ

In normalized units, combining Eqs. (2) and (7) yields

dω2

dz
≃ n3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½γm − 1�

p
; ð8Þ

and Eq. (4) is

dn
dz

≃
1

2

n
ω2

�
dζδ
dn

�
−1
: ð9Þ

Equations (8) and (9) are a coupled system of differential
equations that can be evaluated to determine the density
profile and expected frequency shift for phase-matched
photon acceleration driven by an ultrarelativistic beam
driver of arbitrary length and density. Finding the variation
of ζδ with density in the nonlinear case is a challenge, as it
is the solution of an implicit equation. Insight can be
gained, however, by using an ultrashort driver approxima-
tion, for which an analytic solution can be found.
The ultrashort driver approximation means fixing A ¼

ndτd and letting τd → 0, so that nd ¼ A=τd → ∞. In this
limit, the maximum amplitude of the wave reduces to
γmðn;AÞ ¼ 1þ A2=2n and the phase is φst ¼ π=2.
Equations (8) and (9) may be combined and directly

integrated to obtain

ωðnÞ ¼ ω0 expfA½ζδðnÞ − ζδ0�g ð10Þ

defined for n in ð0; n0�, where nð0Þ ¼ n0. Since dω2=dz >
0 and dn=dz < 0, there are no fixed points or periodic
orbits and so, by the Poincaré-Bendixon theorem [35],
there are no limit sets to the orbits. Furthermore, as n → 0,
ζδðnÞ → ∞ and so we see from Eq. (10) that ωðnÞ → ∞.
We can determine the evolution of the system in terms of
propagation distance z via the implicitly defined equation
for nðzÞ:

z ¼ 2ω2
0

Z
n

n0

1

n0
dζδ
dn0

e2A½ζδðnÞ−ζδ0�dn0: ð11Þ

For a moderate strength driver, A < 1, the location of the
zero density perturbation ζδ can be described accurately by
the expansion

ζδ ¼
π

n1=2
þ 2A

n
þ 3π

16

A2

n3=2
þ � � � : ð12Þ

To verify the model, we ran a number of 1D PIC
simulations using the OSIRIS4.0 framework [36]. Using
normalized units, these were performed for a one-
component electron plasma in a box of width Lz ¼ 35.0
with Nz ¼ 120 096 mesh points, a time step Δt ¼
0.000 254, and four particles per cell, with the density
profile having a short linear ramp to n ¼ n0 followed by a
tailored density profile nðzÞ following the solution to
Eq. (11), i.e., similar to Fig. 1(c). The beam driver had a
square profile and the witness laser pulse a Gaussian profile
with strength a0 ¼ 0.1, duration τL ¼ 1, and initial central
frequency ω0=ωp ¼ 5, i.e., a normalizing plasma density
n0 ¼ 7 × 1019 cm−3 for an 800 nm laser wavelength.
Figure 2(a) shows the results from simulation A, the

witness laser spectrum as a function of z for a driver with
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duration τd ¼ 1, nd ¼ 0.8, and a beam energy
γdmc2 ¼ 50 GeV. The entire witness laser spectrum is
shifted to ω=ω0 > 40. The red curve shows the analytic
solution given by Eq. (10), and the black curves show the
mean and peak frequency. Until 85 mm propagation, these
track the analytic solution very precisely. After 85 mm, the
drive beam electrons are decelerated at the rear, leading to
erosion of the trailing edge, which disrupts the wake. For
longer propagation, numerical dispersion becomes an issue
at the high frequencies of the pulse. An animation of
simulation A is provided in the supplementary material [37].
To address the applicability of the model to realistic 3D

conditions, we used the numerical-dispersion free quasi-3D
PIC code FBPIC [38]. To make the connection to real
parameters, we express values in meter-kilogram-second
units for the quasi-3D simulations. In simulation B shown
in Fig. 2(b), the drive electron beam has a square profile
longitudinally and Gaussian profile transversely with dura-
tion τd ¼ 2 fs, focused radial extent σr ¼ 32 μm, diver-
gence σr0 ¼0.4mrad, peak density nd0¼1.39×1019 cm−3,
i.e., such that A ¼ 0.38, and peak beam energy γdmc2 ¼
50 GeV with relative spread σz=γd ¼ 0.1%. The linearly

polarized witness laser has a normalized field strength
parameter a0 ¼ 1 and initial wavelength λL0 ¼ 800 nm,
corresponding to a peak intensity I ¼ 2.1 × 1018 Wcm−2,
pulse width τL ¼ 4 fs (similar few cycle laser pulses at this
intensity have been demonstrated experimentally [31]), and a
spot size of w0 ¼ 2λp0 ¼ 20λL0 ¼ 16 μm, starting with its
centroid ζcent ¼ 6.6 μm=c behind the front of the electron
drive beam. For these parameters, ζδ ¼ 5.4 μm=c. We use
the plasma density profile shown in Fig. 1 and determined by
Eqs. (10) and (11), scaled by n0 ¼ 1.74 × 1019 cm−3, i.e.,
ω0=ωp ¼ 10.
Simulations were run using 3200 × 120 mesh points and

two angular modes. This gives 85 cells per λL0, which
therefore requires a dispersion-free solver or numerical
dispersion would be an impediment. For the electrons we
use 2 × 2 particles per cell (ppc) in the z and r directions and
8 ppc in the azimuthal direction. The results of the quasi-3D
simulation can be seen in Fig. 2 and a visualization of the
quasi-3Ddata is provided in the supplementarymaterial [37].
Figure 2(b) shows the spectrum as a function of length
propagated in the simulation. The spectrum is normalized to
its peak at each z. Overlaid is the theoretical model of
Eqs. (10)–(12) (red line), which predicts the shift of the
photons well, except for discrepancies arising from beam
focusing, resulting in small modification to the wake wave-
length. Figure 2(d) shows the initial (ii) and final (iv) spec-
trum. As well as showing that the pulse maintains a narrow
bandwidth, the amplitude of the spectrum has increased; i.e.,
the energy of the laser pulse increased. The drive beam loses
25 J of energy over the course of the simulation, while the
laser pulse, initially having 50mJ, gains 200mJ for about 1%
energy transfer efficiency, which could be increased by
optimization of the driver. Note that overall pulse energy
gain is not unexpected, as to within the quasistatic approxi-
mation local field action is conserved [39], and so the energy
gain by the pulse would be expected to scale with the
frequency increase. In the 1D simulation, the energy gain is
proportional to the frequency increase. In the quasi-3D
simulations, the nearly 10× frequency shift results in a
lower 5× pulse energy gain because of losses due to
diffraction or dispersion.
Owing to the nonlinear wake, the back of the pulse sees a

steeper plasma gradient than the front of the pulse. The
pulse develops significant up-chirp, which, together with
dispersion, leads to a 2.7× compression of the pulse from
an initial duration of τL ¼ 4 to 1.7 fs. The intensity sees a
significant increase of 20× from an initial intensity I ¼
2 × 1018 to 4 × 1019 W=cm2, a near-relativistic intensity
corresponding to a0 ¼ 0.4 at 80 nm, in part because the
wake has an approximately parabolic transverse profile and
acts as an effective guiding channel. The simulation is
shown ending at 80 mm. Beyond this length, the beam
driver has lost sufficient energy to break up, and the
simulation is near the resolution limit for the maximum
frequency.

(a)

(b)

(d)

(c)

FIG. 2. Witness laser pulse spectrum as a function of propa-
gation z for (a) 1D PIC and (b),(c) quasi-3D PIC simulations
described in the text. Lines in red are the theoretical curves given
by Eqs. (10)–(12). Black and black dashed lines show the mean
and peak frequencies as a function of z. (d) shows initial (i),(ii)
and maximum shift (iii),(iv) spectra for quasi-3D simulations
with a (i),(iii) 20 GeV beam and (ii),(iv) 50 GeV beam driver.
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Lastly, to model a potential near-term experiment, we ran
simulation C for a 20 GeV beam, which is closer to the
parameters of the current SLAC FACET-II facility [40], and
a longer, τL ¼ 25 fs, witness laser pulse. The beam
divergence was adjusted to σr0 ¼ 0.75 mrad and
a0 ¼ 0.1. In addition, to compensate for increased defo-
cusing of the beam, which results in detuning of the wake
wavelength, we adjusted the electron beam focus to be
20 mm into the simulation. As shown in Fig. 2(c), the laser
spectrum still follows the analytic solution to around
55 mm, where the beam defocusing starts to be significant
and the pulse both dephases and diffracts. Figure 2(d)
shows the initial spectrum (i) and spectrum at 55 mm (ii),
showing the spectrum is still shifted by nearly 8×. The
steep gradient rapidly introduces a strong chirp that leads to
compression of the majority of the pulse to few cycles in the
initial stages. These three simulations are summarized in
Table I.
In summary, we have demonstrated a scheme for large

frequency upshift of a laser pulse using the wake generated
by a relativistic particle beam propagating through a
tailored plasma density profile. Our analytic model predicts
arbitrary frequency shift limited only by depletion of
the drive beam. Quasi-3D simulation results directly
demonstrated a 10× frequency shift with 1% energy
transfer efficiency. The wake itself serves as a waveguide.
Combined with relativistic self-focusing and the length-
ening of the Rayleigh range as the frequency increases, the
pulse is guided for the duration of the interaction.
For a simple unoptimized focused single-beam driver, as

used in the demonstrations here, it will lose energy at near
constant rate in the wake. By equating the length over
which depletion occurs for a single driver with the
frequency gain of the witness, the maximum frequency
shift is Δω ≃ Rωp

ffiffiffiffiffi
γd

p
, where R is a number of the order of

unity representing the ratio of the magnitude of the gradient
in n at the witness position to the maximum electric field in
the driver, similar to the transformer ratio in beam-driven
plasma wakefield acceleration [41]. Another limit is the
effective Rayleigh length of the focused electron beam.
These are not fundamental limits, as there is much scope for
overcoming depletion and defocusing, including advance-
ments in spatiotemporally evolving electron beam drivers
[42], stabilization with magnetic fields [43], or transversely

matched beams [44], for example. For this study, resolution
and simulation size were a limitation. To push to even
higher-frequency shifts will require the development of
new and more sophisticated numerical tools.
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