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Non-Abelian gauge fields give rise to nontrivial topological physics. Here we develop a scheme to create
an arbitrary SU(2) lattice gauge field for photons in the synthetic frequency dimension using an array of
dynamically modulated ring resonators. The photon polarization is taken as the spin basis to implement the
matrix-valued gauge fields. Using a non-Abelian generalization of the Harper-Hofstadter Hamiltonian as a
specific example, we show that the measurement of the steady-state photon amplitudes inside the
resonators can reveal the band structures of the Hamiltonian, which show signatures of the underlying non-
Abelian gauge field. These results provide opportunities to explore novel topological phenomena
associated with non-Abelian lattice gauge fields in photonic systems.

DOI: 10.1103/PhysRevLett.130.083601

Introduction.—An important theme of physics research
in the past decades is to use gauge fields to create systems
with nontrivial topological properties. A canonical example
is the quantum Hall effect [1], where a U(1) gauge field is
coupled to electrons in two dimensions, resulting in
electronic band structures with a nontrivial topology and
topologically robust edge states. As a generalization of the
quantum Hall effect, a topological insulator can be
described as electrons coupled to a spin-dependent
Abelian gauge field [2,3]. More recently, there has been
emerging interest in more complex topological physics
based on non-Abelian gauge fields [4–14]. While the
concept of gauge fields was initially developed for elec-
tronic systems, in recent years there have been significant
efforts in synthesizing gauge fields for other systems
including photons [15–23], phonons [24–30], and cold
atoms [7,31–43].
Different from the U(1) gauge field, which manifests in

nature as the magnetic field coupled to electrons, non-
Abelian gauge fields do not naturally exist for either
electrons or photons. Therefore, to explore the associated
physics, non-Abelian gauge fields need to be artificially
synthesized [44], as has been demonstrated on diverse
experimental platforms, including cold atoms [7,31–
34,36,40,42,43], exciton-polaritons [45–51], mechanics
and acoustics [24,28], superconducting circuits [52], elec-
trical circuits [53], andmolecular systems [54]. For photons,
there have also been recent works that created non-Abelian
gauge fields [15,16,21,22]. These works, however, have not
incorporated the synthetic non-Abelian gauge fields into
lattice systems to achieve topological insulator physics.
In this Letter, we propose to create a lattice system with

an arbitrary SU(2) non-Abelian gauge field for photons in
the synthetic frequency dimension. The concept of syn-
thetic dimensions is to couple internal degrees of freedom

of particles to form a synthetic lattice system [55–80]. In a
photonic ring resonator, for example, electro-optic modu-
lators can be incorporated to couple different longitudinal
modes together to form a synthetic frequency lattice [66].
The Hamiltonian of such a synthetic frequency lattice can
be programmed by designing the waveforms of the elec-
trical signals that control the modulators, which results in
significant tunability and flexibility in creating different
Hamiltonians [63,66]. Artificial U(1) gauge fields have
been achieved for photons in synthetic frequency dimen-
sions [18,20].
To create an arbitrary SU(2) non-Abelian lattice gauge

field in the synthetic frequency dimension, we consider a
system consisting of an array of coupled ring resonators.
We take the polarization as the pseudo-spin for photons,
and each resonator incorporates two electro-optic modu-
lators and two polarization rotators. We show that a non-
Abelian gauge field in a lattice can be achieved with an
appropriate configuration of these polarization rotators and
modulators. As an example, we implement an SU(2)
generalization of the Harper-Hofstadter Hamiltonian, the
U(1) version of which is directly related to the quantum
Hall effect. Using numerical calculations, we show that by
measuring the steady-state photon amplitudes inside the
resonators, the bulk states, topologically protected edge
states, and the non-Abelian “Hofstadter butterflies” can be
directly probed, all of which show signatures of the
underlying non-Abelian gauge field. The results here point
to a pathway to artificially synthesize non-Abelian lattice
gauge fields for photons and to explore the associated
topological physics.
Results.—Figure 1 illustrates our setup to create the non-

Abelian gauge field in a two-dimensional lattice. As shown
in Fig. 1(b), Our setup consists of a one-dimensional array
of coupled ring resonators. For each resonator, the main
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section of the waveguides supports two electromagnetic
modes with orthogonal polarizations denoted as the s and p
polarizations. We use these two polarizations to form the
pseudo-spin state basis for the photons, with the s and p
polarizations corresponding to the spin-up and -down
states, respectively. We assume that the two polarizations
are degenerate in the main section, and the group velocity
dispersion of the waveguides is negligible. Hence, the
resonator has the same free spectral range ΩR for both
polarizations. Neighboring resonators are coupled to each
other. Because of the nature of coupling, light in the
neighboring resonators propagates in opposite clockwise
or counterclockwise directions. We assume that the cou-
pling preserves the photon spin state, and the coupling
strength κ is real, frequency independent, and spin
independent.
Within each resonator [Fig. 1(c)], we incorporate two

polarization rotators in the main section of the waveguide.
The polarization rotators perform SU(2) transformations on
the photon spin state [81]. The main section of the wave-
guide is connected with a polarization splitter and a
combiner, which separate the spin-up and spin-down states
into two different polarization-maintaining waveguide
branches. Within each branch there is an electro-optic
modulator. These two modulators in two branches are
independently controlled and modulated at the fre-
quency ΩR.
The coupled resonator array is modeled by the tight-

binding lattice structure shown in Fig. 1(a). The coupling
between neighboring resonators forms one spatial dimen-
sion labeled by the resonator index m. The frequency
modes of the ring resonators form a synthetic dimension
labeled by the mode index n. With the modulation
frequency of the modulators chosen at the free spectral

range ΩR of the resonators, the neighboring frequency
modes in each resonator are coupled [20]. In the following,
we show that by properly choosing the parameters for the
polarization rotators and the modulators, an arbitrary SU(2)
gauge field can be implemented in the two-dimensional
lattice in Fig. 1(a).
We start by examining the mth resonator in the array by

itself and show that along the synthetic frequency dimen-
sion, this resonator can implement the Hamiltonian

Ĥm ¼ −gX
n

ðâ†m;nþ1Umâm;n þ H:c:Þ ð1Þ

with proper design of the polarization rotators and the
modulators. (We assume ℏ ¼ 1 throughout the Letter.) In
Eq. (1), g is the real coupling strength between neighboring
sites along the synthetic frequency dimension. âm;n ¼
½âm;n;↑; âm;n;↓�T with âm;n;↑ and âm;n;↓ being the annihila-
tion operators for the spin-up and spin-down states on the
ðm; nÞ lattice site, respectively, â†m;n ¼ ½â†m;n;↑; â

†
m;n;↓�. Um,

the link variable along the synthetic frequency dimension,
is an element of the SU(2) matrix group, and can be
explicitly written as

Um¼
�
eiαm cosθm e−iβm sinθm
−eiβm sinθm e−iαm cosθm

�
; −π<αm;βm;θm ≤ π;

ð2Þ

Um ¼ expðiAmÞ. Am, a 2 × 2 Hermitian matrix, is the
corresponding gauge potential.
To show Eq. (1), we expand the electric field inside the

mth resonator at the time TTR þ t as

ψðm; t; TÞ ¼
X
n

am;nðTÞeinΩRt: ð3Þ

Here, ψðm; t; TÞ≡ ½ψ↑ðm; t; TÞ;ψ↓ðm; t; TÞ�T describes
the spin-dependent amplitude of the electric field. TR ¼
2π=ΩR is the round-trip propagation time of light in-
side the resonator. t ∈ ð−TR=2; TR=2� is the fast time
variable for light propagation within each round-trip,
and T, a non-negative integer, is the slow time vari-
able indexing the number of round-trips [59]. am;nðTÞ≡
½am;n;↑ðTÞ; am;n;↓ðTÞ�T describes the spin-dependent ampli-
tudes on the lattice site labeled by ðm; nÞ. After the light
passes through a round-trip inside the resonator, the electric
field becomes

ψðm; t; T þ 1Þ ¼
X
n

am;nðT þ 1ÞeinΩRt

¼ VmDmðtÞV†
m

X
n

am;nðTÞeinΩRt; ð4Þ

where Vm and V†
m describe the time-independent polari-

zation rotations, and DmðtÞ describes the time-dependent,

FIG. 1. Implementation of an arbitrary SU(2) lattice gauge field
in the synthetic frequency dimension. (a) The tight-binding lattice
model involving the non-Abelian gauge field. Each circle
represents a lattice site with spin-up and spin-down states. The
lattice site excited by the continuous wave (cw) laser input is
colored in blue. (b) A schematic of the coupled resonator array. In
the heterodyne detection, a polarization rotator is inserted to
ensure that both spin components of the reference signal are finite
when mixing. (c) The detailed structure of one resonator as
shaded in gray in (b). The black arrows and dots indicate two
orthogonal polarizations (spins).
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spin-dependent modulation in Fig. 1(c). We take the
transmission functions of the modulation as

DmðtÞ ¼
�
ei2gTR cosðΩRtþδmÞ 0

0 ei2gTR cosðΩRt−δmÞ

�
≈ I2

þ i2gTR

�
cosðΩRtþ δmÞ 0

0 cosðΩRt− δmÞ

�
: ð5Þ

The modulation frequency isΩR, the modulation strength is
2gTR, and the two modulators differ in their phases by 2δm.
IN is the N × N identity matrix, and the approximation in
Eq. (5) is valid in the weak-modulation limit gTR ≪ 1.
Inserting Eq. (5) into Eq. (4), we obtain

am;nðT þ 1Þ − am;nðTÞ ¼ igTR½VmeiδmσzV
†
mam;n−1ðTÞ

þ Vme−iδmσzV†
mam;nþ1ðTÞ�; ð6Þ

where σx, σy, and σz are the Pauli matrices for the photon
spin. By defining ∂Tam;n ≈ ½am;nðT þ 1Þ − am;nðTÞ�=TR

[59], we obtain

i∂Tam;n ¼ −gðVmeiδmσzV
†
mam;n−1 þ Vme−iδmσzV†

mam;nþ1Þ:
ð7Þ

Comparing Eq. (7) and the Hamiltonian in Eq. (1), we
find that they describe the same dynamics if Um ¼
Vme−iδmσzV†

m. Therefore, to implement the link variable
Um described by Eq. (2), the parameters for the modulators
and the polarization rotators are chosen as

δm ¼ cos−1ðcos θm cos αmÞ;
Vm ¼ e−iðβm2 þπ

4
Þσzeiγmσy ;

γm ¼ 1

2
Argð− cos θm sin αm þ i sin θmÞ; ð8Þ

where Arg() is the principal value of the complex argument
in the range ð−π; π�.
Next, we take into account the coupling between

neighboring resonators in the array. In the weak-coupling
and weak-modulation regime, i.e., κTR ≪ 1 and gTR ≪ 1,
the Hamiltonian describing the entire resonator array in
Fig. 1(b) is

Ĥ ¼ −X
m;n

ðκâ†mþ1;nâm;n þ gâ†m;nþ1Umâm;n þ H:c:Þ: ð9Þ

The loop operator of each square plaquette in this lattice in
the counterclockwise direction, with lattice site ðm; nÞ
being the left-bottom corner, reads

Wm;n ¼ κ2g2Umþ1U
†
m: ð10Þ

In the special case where Um ¼ eimϕI2, Wm;n ∝ eiϕI2, the
Hamiltonian is then reduced to the standard Harper-
Hofstadter model with a U(1) Abelian gauge field, and
ϕ is the magnetic flux inside each plaquette of the lattice.
More generally, the Um’s can be chosen such that

½Wm;n;Wm0;n0 � ≠ 0 for m0 ≠ m, n0 ≠ n. This noncommuta-
tivity of the loop operators is the condition for the presence
of a non-Abelian gauge field [41].
Here we briefly comment on the values of some param-

eters in our model. In a 20-m-long fiber loop cavity with
ΩR ¼ 2π × 10 MHz [70,76,79,82], for example, the round-
trip time is TR ¼ 0.1 μs. If we choose gTR ¼ 0.05, which is
in the regime of weak modulation, the maximum voltage
applied on the electro-optic modulator is approxima-
tely 0.03Vπ where Vπ is the half-wave voltage. The choice
of κTR ¼ 0.05, which is in the regime of weak coupling,
corresponds to a beam splitter with 90∶10 coupling ratio.
We next show that the band structures of a lattice system

in the synthetic dimension that possesses non-Abelian
gauge fields can be observed by measuring the steady-
state photon amplitudes inside the resonators. We assume
that there areM coupled resonators in Fig. 1(b). Resonators
1 and M are either coupled or decoupled to implement the
periodic or open boundary conditions along the spatial
dimension, respectively. To probe the system, we can use
an input waveguide to excite one of the resonators [for
example, resonator 1 in Fig. 1(b)] by a continuous wave
laser with a continuously tunable frequency ωcw ¼ ω0þ
nΩR þ δω. ω0 is the central frequency, and δω is the
frequency detuning from the nth resonance of the cavities.
The time-dependent intracavity light of each resonator can
be measured from a drop port that samples the steady-state
photon amplitudes inside the resonator. The two polariza-
tion components of the sample can be separated with a
polarization beam splitter. The frequency contents of
both polarization components can then be obtained using
a heterodyne detection scheme where each of these
polarization components is interfered with a portion of
the frequency-shifted laser input [70]. This measure-
ment provides a detection of ψðm; t; δωÞ≡ ½ψ↑ðm; t; δωÞ;
ψ↓ðm; t; δωÞ�T , which is related to ψðm; t; TÞ through a
Fourier transformation on the variable T.
It has been noted that the fast time variable t is directly

related to the wave vector kf associated with the synthetic
frequency dimension by kf ¼ ΩRt [82–85]. There-
fore, below, we will relabel the fast time variable t as kf
so that the connection to band structure becomes more
transparent. Assuming that we are exciting the m0th
resonator with a spin state ½ψ exc

↑ ;ψ exc
↓ �T , based on the

input-output formalism [82,86,87], the steady-state spin-
dependent amplitudes in the mth resonator shown here
for the spin-up case as an example, are related to the input
jψ ini by

ψ↑ðm; kf; δωÞ ¼
�
m;↑

���� i
ffiffiffi
γ

p
δω − ĤðkfÞ þ iðγ þ γ0

2
Þ

����ψ in

�
;

ð11Þ
where γ0 is the intrinsic loss of the resonators, and γ is
the coupling constant between the resonators and the
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input-output waveguides. jm;↑i≡ ½0; 0;…; 1; 0|{z}
mth resonator

;…;

0; 0�T and jψ ini≡ ½0; 0;…; ψ exc
↑ ;ψ exc

↓|fflfflfflfflffl{zfflfflfflfflffl}
m0th resonator

;…; 0; 0�T are 2M-

element column vectors describing the spin-dependent
amplitudes inside the resonator array.
As a concrete example, we study an SU(2) generalization

of the Harper-Hofstadter Hamiltonian under Landau gauge.
The Hamiltonian is created by setting Um ¼ eimθσyeimφσz in
Eq. (9), which results in

Ĥ1¼−X
m;n

ðκâ†mþ1;nâm;nþgâ†m;nþ1e
imθσyeimφσz âm;nþH:c:Þ:

ð12Þ
With a choice of θ=2π ¼ pθ=qθ, φ=2π ¼ pφ=qφ where pθ,
qθ, pφ, qφ are integers, the lattice has the period of q along
the spatial dimension, where q is the least commonmultiple
of qθ and qφ. This Hamiltonian has been shown to exhibit
rich topological insulator behaviors with spin-orbit-coupled
Hofstadter butterfly pairs [9]. Using Eq. (11), we can
numerically simulate the measurement of the band struc-
tures of the Hamiltonian Ĥ1. We systematically study Ĥ1

when q ¼ 3. It has been shown that Ĥ1 is invariant with
respect to the interchange of θ and φ [9]. Moreover, we note
that the band structure does not change under θ → −θ
transformation: Ĥ1ð−θ;φÞ ¼ ΣzĤ1ðθ;φÞΣ−1

z where Σz ¼
σz ⊗ IM. Therefore, for q ¼ 3, to create a spatially varying
gauge field, only two inequivalent parameter combi-
nations are available: ðθ;φÞ ¼ ð0; 2π=3Þ or ð2π=3; 2π=3Þ.
According to the non-Abelian condition defined through the
noncommutativity of the loop operators [9,41], ðθ;φÞ ¼
ð0; 2π=3Þ corresponds to an Abelian gauge field related

to the quantum spin Hall effect [2,3], and ðθ;φÞ ¼
ð2π=3; 2π=3Þ corresponds to a non-Abelian gauge field.
We refer to these two parameter combinations as the
“Abelian case” and the “non-Abelian case” in the following.
Figure 2 shows the band structures of Ĥ1 when the

periodic boundary condition is applied to the spatial
dimension. In Figs. 2(a) and 2(e), we plot the band
structures by diagonalizing the Hamiltonian Ĥ1 for the
Abelian and non-Abelian cases, respectively. km is the
wave vector associated with the spatial dimension m. To
connect the band structures with the simulated steady-state
spin-dependent amplitudes in Eq. (11), we define the
km-dependent, spin-dependent photon amplitudes via the
Fourier transform

ψ sðkm; kf; δωÞ ¼
XM
m¼1

ψ sðm; kf; δωÞe−ikmm; s ¼ ↑;↓:

ð13Þ

Figures 2(b)–2(d) and 2(f)–2(h) show the simulated results
of jψ↑ðkm; kf; δωÞj at different values of km. The resonance
locations of jψ↑ðkm; kf; δωÞj coincide with the slices of the
band structures in Figs. 2(a) and 2(e)[88].
In Fig. 3, we truncate the lattice in Fig. 1(a) along the

spatial dimension and study the eigenspectra of Ĥ1 subject
to the open boundary condition, for both the Abelian
case [Figs. 3(a)–3(c)] and the non-Abelian case
[Figs. 3(d)–3(f)]. In Figs. 3(a) and 3(d), the bulk states
of the continuum can be viewed as the bands in Figs. 2(a)
and 2(e) projected onto the kf axis. Within the band gaps,
edge states are present. To illustrate the properties of these
edge states, as examples in Figs. 3(b) and 3(e), we plot the
pseudo-spins ðhσxi; hσyi; hσziÞ of the edge states on the
Bloch sphere, for the energy as indicated by the color dots
in Figs. 3(a) and 3(d) with m ¼ 1:

hσsi ¼ hψ eigðm;kf; ϵÞjσsjψ eigðm;kf; ϵÞi;

jψ eigðm;kf; ϵÞi ¼
�ψ eig

↑ ðm;kf; ϵÞ
ψ eig
↓ ðm;kf; ϵÞ

�
; s¼ x; y; z: ð14Þ

We use ψ eig
s ðm; kf; ϵÞ to represent the eigenstate of Ĥ1 with

wave vector kf, energy ϵ, pseudo-spin s, and on lattice site
m. In the Abelian case, the edge states are purely spin up
when kfϵ < 0, and spin down when kfϵ > 0. This is in
accordance with the quantum spin Hall effect where two
electron spins are decoupled and independently coupled
to opposite magnetic fields [2,3,89]. In contrast, in the
non-Abelian case, as shown in Figs. 3(d) and 3(e), the
pseudo-spins become dependent on kf, but they are still
orthogonal for a pair of edge states at ðkf; ϵÞ and ð−kf; ϵÞ as
a result of Kramers’s degeneracy [88]. In Figs. 3(c) and
3(f), we perform the steady-state simulations by Eq. (11),
and plot the kf-resolved photon number in all cavities:

FIG. 2. Band structures of the Hamiltonian Ĥ1 under
the periodic boundary condition. (a)–(d) The Abelian case
ðθ;φÞ ¼ ð0; 2π=3Þ. (e)–(h) The non-Abelian case ðθ;φÞ ¼
ð2π=3; 2π=3Þ. (a) and (e) are acquired by diagonalizing Ĥ1.
(b)–(d), (f)–(h) are simulated results of jψ↑ðkm; kf; δωÞj at fixed
km values, as illustrated by the gray slices in (a) and (e). κ ¼ g in
this figure, γ ¼ γ0 ¼ 0.01g, m0 ¼ 1, ψexc

↑ ¼ 1, ψ exc
↓ ¼ 0

in (b)–(d), (f)–(h).
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Nðkf; δωÞ≡
XM
m¼1

X
s¼↑;↓

jψ sðm; kf; δωÞj2: ð15Þ

The excitation for the Abelian case is ψ exc
↑ ¼ 1 and

ψ exc
↓ ¼ 0. For the non-Abelian case, we use a kf-dependent

excitation instead:

ψ exc
s ðkfÞ ¼

	
ψ eig
s ðm0; kf; ϵÞ; kfϵ < 0;

ψ eig
s ðm0;−kf; ϵÞ; kfϵ > 0;

ð16Þ

where the eigenenergy ϵ is chosen at the energies of the
edge states. In Figs. 3(c) and 3(f), one sees that only the
positive-energy (negative-energy) edge state is excited
when kf < 0 (kf > 0), which confirms the spin-dependent
properties discussed above. In other words, the SU(2)
generalization of the Harper-Hofstadter model inherits
the chirality of the edge states of the U(1) counterpart,
but the pseudo-spin basis becomes kf dependent because of

the spin mixture induced by the non-Abelian gauge field.
This unique signature of the non-Abelian gauge field can be
probed in our measurement scheme by an appropriate time-
dependent input state.
Finally, we show in Fig. 4 that by performing time-

averaged measurements, we can resolve the Hofstadter
butterfly spectrum associated with the Hamiltonian Ĥ1.
Given the parameter combination ðθ;φÞ in the
Hamiltonian, we measure the photon number in all cavities
averaged within a round-trip time:

N̄ðδω; θ;φÞ≡ 1

2π

Z
π

−π
Nðkf; δωÞdkf: ð17Þ

Equation (17) is a time-averaged measurement since kf is
interpreted as the fast time variable t. For any ðθ;φÞ value,
the Hamiltonian Ĥ1ðθ;φÞ can be implemented by our
synthetic frequency dimension platform via the mathemati-
cal mapping in Eq. (8). Such flexibility enables us to probe
N̄ðδω; θ;φÞ in the full parameter space 0 ≤ θ, φ < 2π.
Figure 4 shows two representative slices of the parameter
space, θ ¼ 0 [Abelian case, Figs. 4(a) and 4(b)] and θ ¼
2π=3 [non-Abelian case, Figs. 4(c) and 4(d)]. In Figs. 4(b)
and 4(d), we plot the numerically simulated results of
N̄ðδω; θ;φÞ. The resonance locations of N̄ðδω; θ;φÞ cor-
respond to the allowed energies in Figs. 4(a) and 4(c) [88].
Conclusion.—We have developed a scheme to artificially

synthesize arbitrary SU(2) lattice gauge fields for photons,
using the concept of synthetic frequency dimensions in a
coupled resonator array. The parameters of the non-Abelian
gauge field are flexible by tuning the modulation param-
eters and polarization rotation parameters in our optical
setup. We have also numerically demonstrated that the band
structures of the lattice can be resolved by steady-state
measurements. Such eigenspectra exhibit distinct features
when the underlying lattice gauge field becomes non-
Abelian. The results presented in this Letter provide
opportunities to explore novel topological phenomena
associated with non-Abelian lattice gauge fields in photonic
systems.

FIG. 3. Eigenspectra of the Hamiltonian Ĥ1 under the open bo-
undary condition. (a)–(c) The Abelian case, ðθ;φÞ ¼ ð0; 2π=3Þ.
(d)–(f) The non-Abelian case, ðθ;φÞ ¼ ð2π=3; 2π=3Þ. (a) and (d)
are eigenspectra by diagonalizing Ĥ1. (b) and (e) are pseudo-
spins of the edge states on the first lattice site, with kf and ϵ
values indicated by the red and blue dots in (a) and (d). (c) and (f)
are numerically simulated results of Nðkf; δωÞ with γ ¼ γ0 ¼
0.01g and m0 ¼ 1. κ ¼ g, M ¼ 30q − 1 ¼ 89 in this figure.

FIG. 4. Hofstadter butterfly spectra of the Hamiltonian Ĥ1. (a),(b) The Abelian case θ ¼ 0. (c),(d) The non-Abelian case θ ¼ 2π=3. (a)
and (c) are acquired by diagonalizing the Hamiltonian Ĥ1. (b) and (d) are simulated results of N̄ðδω; θ;φÞ. κ ¼ g, M ¼ 255 in this
figure, γ ¼ γ0 ¼ 0.01g, m0 ¼ 1, ψexc

↑ ¼ 1, ψ exc
↓ ¼ 0 in (b) and (d). In this figure, kf is sampled at −π=2; 0; π=2 and π, and the result in

(c) is similar to that in Ref. [9]. The result for (c) with denser sampling points is shown in the Supplemental Material [88].
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