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We present the first direct and nonperturbative computation of the graviton spectral function in quantum
gravity. This is achieved with the help of a novel Lorentzian renormalization group approach, combined
with a spectral representation of correlation functions. We find a positive graviton spectral function,
showing a massless one-graviton peak and a multigraviton continuum with an asymptotically safe scaling
for large spectral values. We also study the impact of a cosmological constant. Further steps to investigate
scattering processes and unitarity in asymptotically safe quantum gravity are indicated.
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Introduction.—The quest for a consistent quantum
theory of gravity continues to offer challenges [1]. An
important contender is asymptotically safe gravity [2],
where the metric field remains the fundamental carrier
of the gravitational force. In this purely quantum field
theoretical setup the trans-Planckian ultraviolet regime of
quantum gravity is governed by an interacting fixed point,
and gravity is ruled by the same principles as the standard
model of particle physics.
The field of asymptotically safe gravity has seen sub-

stantial progress in the past decades, mostly using
Euclidean functional renormalization [3], for reviews see
[4–13]. Nevertheless, the question of unitarity is far from
being settled [11,14], as many results are obtained within
Euclidean signature. Naturally, the Wick rotation—already
a subtle issue on flat Minkowski spacetimes—is further
complicated by the dynamical metric. Still, first steps
towards computations with Lorentzian signature have
been reported [15–25], also for other quantum gravity
approaches [26–32].
In this work, we put forward the first bona fide

Lorentzian renormalization group study of asymptotically
safe gravity. The key idea is the use of spectral representa-
tions for correlation functions, together with an expansion
about flat Minkowski spacetime [13]. In particular, propa-
gators obey the Källén-Lehmann (KL) representation
[33,34]. This allows us to find the gravitational fixed point
in Lorentzian signature alongside the graviton spectral
function. Most notably, the existence of the latter offers

access to the graviton propagator for general complex
momenta, including timelike momenta relevant for grav-
iton-mediated scattering processes.
Lorentzian quantum gravity and spectral functions.—We

consider Lorentzian quantum gravity based on the classical
Einstein-Hilbert action

SEH½gμν� ¼
1

16πGN

Z
d4xj det gμνj12ðR − 2ΛÞ; ð1Þ

with Newton’s constant GN , cosmological constant Λ, and
Ricci scalar R½gμν�, augmented with a gauge-fixing and
ghost action. We use a flat Minkowskian background
η ¼ diagð1;−1Þ and split the metric field gμν ¼ ημνþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGN

p
hμν linearly into background and fluctuation

hμν. The main object of interest in the present work is
the spectral function of the transverse-traceless (TT)
graviton mode with the scalar coefficient Ghh, for which
we assume the existence of a KL representation. It relates
the spectral function to the propagator via

Ghhðp0; jp⃗jÞ ¼
Z

∞

0

dλ
π

λρhðλ; jp⃗jÞ
λ2 þ p2

0

; ð2Þ

with the temporal and spatial momentum p0 and p⃗,
respectively, the spectral values λ, and the graviton spectral
function

ρhðλ; jp⃗jÞ ¼ lim
ε→0

2ImGhhðp0 ¼ −iðλþ iεÞ; jp⃗jÞ: ð3Þ

The spectral function acts as a linear response function of
the two-point correlator, encoding the energy spectrum of
the theory. For asymptotic states, it can be understood as a
probability density for the transition to an excited state with
energy λ. The existence of a spectral representation cannot
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be taken for granted; but if it exists, it tightly constrains the
analytic structure of the propagator and the asymptotes
of the spectral function, see [35,36] for a discussion in
Yang-Mills theories.
It is convenient to parameterize the spectral function at

p⃗ ¼ 0 through a single-graviton delta peak with mass mh
and a multigraviton continuum fh starting out at the
threshold λ ¼ 2mh,

ρhðλÞ ¼
1

Zh
½2πδðλ2 −m2

hÞ þ θðλ2 − 4m2
hÞfhðλÞ�: ð4Þ

Classically, the spectral function is given by a single
graviton peak with mh ¼ 0 and a trivial wave-function
renormalization, Zh ¼ 1. Quantum fluctuations change the
value of Zh and lead to a multigraviton continuum fh. For
small spectral values, fh approaches a finite value which
can be determined using perturbation theory in an effective
theory below the Planck scale. For spectral values
approaching the Planck scale and above, the spectral
function becomes sensitive to the ultraviolet (UV) com-
pletion and nonperturbative techniques are required for its
determination.
Spectral renormalization group.—To establish the exist-

ence of Eq. (4), we set up a functional renormalization
group (FRG) approach for Lorentzian quantum field
theories, utilizing the spectral functional framework devel-
oped in [36,37]. This approach is based on a modified
dispersion p2 → p2 þ Rkðp2Þ, where we use the Lorentz-
invariant choice

Rk ¼ Zϕk2: ð5Þ

This is a Callan-Symanzik (CS) cutoff including the on-
shell wave-function renormalization Zϕ of the fluctuation
fields ϕ ¼ ðhμν; cμ; c̄μÞ. The cutoff Eq. (5) shifts the on-
shell condition by k2 to larger values without introducing
poles or cuts into the propagator. Conversely, using a
standard momentum-dependent Lorentz-invariant regulator
Rkðp2Þ necessarily introduces poles and cuts in the com-
plex plane. Then, Eq. (2) does not hold at finite k. Hence,
for the present study, we use Eq. (5) which does not spoil
Eq. (2) from the outset.
While the cutoff Eq. (5) is best suited to extract spectral

data, it comes at a price: the corresponding FRG flow
requires additional renormalization because the standard
UV divergences and counterterms resurface [38]. In prac-
tice, local divergences of the flow must be absorbed in the
parameters of the cutoff-dependent effective action. Here,
we use dimensional regularization, which respects the
symmetries of the theory including gauge and diffeomor-
phism invariance, see [36,37]. This leads to a well-defined
finite flow for effective actions Γk with Euclidean or
Lorentzian signature,

∂tΓk½ϕ� ¼
1

2
TrGk½ϕ�∂tRk − ∂tSct;k½ϕ�: ð6Þ

Here, Rk is the regulator matrix of all graviton and ghost

modes. Similarly, Gk½ϕ� ¼ 1=ðΓð2Þ
k ½ϕ� þRkÞ with Γð2Þ

k ≡
δ2Γk=δϕδϕ is the field-dependent propagator matrix at
scale k, and we have introduced the “RG time” parameter
t ¼ ln k=kref with a reference scale kref .
The spectral flow Eq. (6) can be derived from the

standard finite Wetterich flow [39] with spatial-momentum
regulators Rkðp⃗2Þ → Zϕk2 as briefly outlined in the
Supplemental Material [40], see also [54]. Spatial-
momentum regulators also preserve the spectral represen-
tation but break Lorentz invariance. The latter is restored in
the above limit, in which also the counterterms ∂tSct;k
emerge naturally in a well-defined limit of finite flows.
With Eq. (6), we can provide explicit flow equations for

the graviton propagator or vertices. For example, the flow
for the graviton two-point function follows from Eq. (6)
through a vertex expansion of Γk½ϕ� about vanishing fluctu-
ation field ϕ ¼ 0. It is extracted from the graviton TT mode

whose scalar propagator reads Ghh ¼ ðΓðhhÞ
TT þ RkÞ−1, with

ΓðhhÞ
TT ðpÞ ¼ ZhðpÞðp2 þ μk2Þ: ð7Þ

Here, ZhðpÞ is the momentum-dependent graviton wave
function, and μ the on-shell graviton mass parameter. With
this parametrization, the graviton propagator has a pole at
m2

h ¼ k2ð1þ μÞ, cf., the delta peak in the spectral function
Eq. (4). The wave-function renormalization in Eqs. (4) and
(5) is defined on-shell Zh ≡ Zhðp2 ¼ −m2

hÞ, the Lorentzian
signature being key for this definition.
Schematically, the nonperturbative flow for the graviton

two-point function is displayed in Fig. 1. Apart from
regulator insertions and prefactors, it resembles one-loop
diagrams, though with nonperturbative propagators and
vertices. We further need the flow of gravitational vertices,
in particular the three-graviton vertex. Here, we limit
ourselves to vertices at vanishing momentum, where we
may exploit equations derived in Euclidean signature as
these fall back onto their Lorentzian counterparts required
here [55,56]. Differences in the technical setup are sub-
leading as long as the mass parameter stays away from off-
shell poles, and the graviton anomalous dimension ηh ¼
−∂t lnZh remains small.
Flow of the graviton spectral function.—We are now

ready to provide an explicit nonperturbative flow for the

FIG. 1. Flow of the graviton two-point function. Double
(dotted) lines represent graviton (ghosts) propagators, dots
indicate vertices, and the cross denotes a regulator insertion.
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graviton spectral function Eq. (4). Using the flow for the
graviton propagator with Eqs. (2) and (3), we find

∂tρh ¼ −2ImG2
hhð∂tΓðhhÞ

TT þ ∂tRkÞ; ð8Þ

where the right-hand side is evaluated at p ¼ −iðλþ iεÞ,
and the present spectral approach allows us to take this limit
analytically, see [36,37]. Using the spectral representation
Eq. (2) for gravitons and ghosts, all diagrams in Fig. 1 are
now expressed as integrals over spectral values and a
dimensionally regularized loop momentum. This reads

∂tΓ
ðhhÞ
TT j3-point ¼

Y3
i¼1

Z
∞

0

dλ2i
2π

ρhðλiÞI3-pointðp; fλjgÞ; ð9Þ

for the diagram with graviton three-point vertices (second
diagram in Fig. 1), and similarly for the other diagrams.
The three spectral values relate to the three propagators in
the diagram, and the function I3-point accounts for all tensor
contractions and a remaining loop momentum integration.
The latter integral can be performed analytically. In Eq. (9),
we only need the spectral function Eq. (4) at p⃗ ¼ 0 due to
Lorentz invariance. For the single-graviton delta peak, also
the λi integrals in Eq. (9) can be performed straightfor-
wardly, leading to closed analytic flows.
The graviton spectral function is obtained by integrating

the flow Eq. (8). Here, we solve Eq. (8) without feeding
back fh on the right-hand side. This contribution is
subleading and will be considered elsewhere.
Single-graviton peak.—We start with the flow of the

single-graviton delta peak. Remarkably, our on-shell flows
do not suffer from poles in the graviton propagator ðμ ¼ −1Þ
which are commonplace in off-shell studies. The three-
graviton vertex, evaluated at vanishing momentum, provides
the flow for Newton’s coupling GNðkÞ ¼ gðkÞ=k2 with an
asymptotically safe UV fixed point

ðg; ηh; μÞj� ¼ ð1.06; 0.96;−0.34Þ: ð10Þ

The scaling exponents θ ¼ 2.49� 3.17i compare well with
those found in Euclidean studies. To connect the short-
distance fixed point Eq. (10) with general relativity Eq. (1) at
large distances, we impose the boundary conditions

ðGNðkÞ; ZhðkÞ; k2μðkÞÞjk→0 ¼ ðGN; 1;−2ΛÞ; ð11Þ

where we have identified the infrared (IR) mass term with
the cosmological constant in Eq. (1). Note that for normal-
izable spectral functions with

R
λρðλÞdλ ¼ 1, the on-shell

value of the wave function follows from this normalization.
The on-shell choice Zh ¼ 1 is only possible as ρh cannot be
normalized:

R
λρhðλÞdλ ¼ ∞ following from its scaling in

the UV regime, see [25].

For now, we demand Λ to vanish. Besides being viable
phenomenologically, it also ensures that the on-shell
condition on a flat Minkowski background remains satis-
fied. The resulting RG trajectory for ðg; Zh; μÞ is displayed
in Fig. 2, with the Planck scale set to M2

pl ¼ 1=GN . We
observe that Zh becomes a constant in the IR while it scales
as ∼kηh in the UV, whereas g and −μ scale ∼k2 in the IR and
settle at fixed points in the UV. The spike for g around the
Planck scale can be traced back to the complex conjugate
nature of the scaling exponents.
Multigraviton continuum.—The multigraviton conti-

nuum is found by integrating the flow Eq. (8) with
Eq. (4) on the trajectory displayed in Fig. 2. Structurally,
the flow is proportional to θðλ2 − 4m2

hÞ with the largest
contribution at the threshold. Consequently, the spectral
function at λ is predominantly built from quantum fluctua-
tions at k ≈ λ=ð2 ffiffiffiffiffiffiffiffiffiffiffi

1þ μ
p Þ which supports our approxima-

tion of dropping the multigraviton continuum fh on the
right-hand side of the flow. Our result for fh is shown in
Fig. 3. The function fh approaches a constant below the
Planck scale, and scales as ∼λη�h−2 above the Planck scale.
The spike near the Planck scale can be traced back to the
complex conjugate scaling exponents, as was the case for g.
Overall, the spectral function contains a massless delta peak
and a positive multigraviton continuum, constant in the IR
and with an asymptotically safe scaling in the UV. The
same attributes were found in the recent reconstruction
from Euclidean data [25].
The finite value of the spectral function in the IR implies

the presence of a subleading logarithm in the propagator
Ghh ∼ p−2 − Ah lnp2þ subleading, as highlighted in the
inset in Fig. 3. The coefficient Ah is universal (regulator
independent) but gauge dependent [25,57]. It can be deter-
mined within effective theory, giving Ah¼61=ð60πÞ≈0.32.
Conversely, integrating the flow gives Ah ¼ 35=ð9 ffiffiffi

3
p Þ−

11=ð2πÞ ≈ 0.49. The difference is due to the neglected
feedback of fh, and serves as an indicator for subleading
corrections. We conclude that our approximation does not

FIG. 2. UV-IR connecting trajectory showing the dimension-
less Newton coupling g, the graviton mass parameter μ, and the
graviton wave-function renormalization Zh.
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affect the leading behavior of the propagator or global
characteristics of the spectral function. We remark that the
gauge dependence of the spectral function, which can be
computed exactly in the IR via effective theory, is also
present in the UV. Only the on-shell graviton delta peak is
gauge independent.
With the spectral function and using Eq. (2), we have

access to the propagator in the whole complex momentum
plane. The real and imaginary parts of the propagator are
depicted in Fig. 4, where we excluded the pole contribution
in the real part. Both parts vanish for asymptotically large
p. The real part displays a unique pole at vanishing p (not
shown in Fig. 4), while the imaginary part shows a branch
cut along the timelike axis.
Cosmological constant.—Next, we turn to Lorentzian

quantum gravity with a nonvanishing cosmological con-
stant. On de Sitter (dS) or anti–de Sitter (AdS) back-
grounds, the classical graviton and ghost continue to be
massless, and graviton vertices are deformed in comparison
with flat backgrounds. Since alterations of the geometry are
relevant for large spatial distances, we expect to find
modifications of the spectral function at small spectral
values. We continue to use flat backgrounds as above,

meaning that our setup at Λ ≠ 0 becomes an off-shell
expansion. For simplified trajectories

GNðkÞ ¼
g�

k2 þ g�M2
pl

; ð12Þ

the spectral flows admit analytic solutions which facilitate
the present qualitative discussion. In Eq. (12), g� takes the
role of a free parameter. Furthermore, we neglect the ghost
contributions. The respective UV fixed point is given by

μ� ¼ −g�

cμ þ g�
; η�h ¼

2g�

2cη þ g�
; ð13Þ

with ðcμ; cηÞ ¼ ð1.77; 0.49Þ known analytically and pro-
vided in the Supplemental Material. Using g� ¼ 1.06 from
Eq. (10), we find μ� ¼ −0.38 and η�h ¼ 1.04, both values
being approximately 10% off, see Eq. (10). This indicates
that the ghost contributions are indeed subleading.
The flow is readily integrated analytically with the IR

boundary conditions (11),

ZhðkÞ ¼
�
1þ 1

cηη�h

k2

M2
pl

�−1
2
η�h
;

μðkÞ ¼ μ� −
2Λ
k2

þ c1M2
pl − 2Λ
k2

½ZhðkÞ−c2 − 1�; ð14Þ

with c1 ¼ 2.17g�=ð1.77þ g�Þ and c2 ¼ 0.45 (further
details including analytical expressions are given in the
Supplemental Material).
Several comments are in order. For g� taking real positive

values, the graviton anomalous dimension ranges within
η�h ∈ ð0; 2Þ. We therefore have Zh → 1 in the IR, and Zh →
0 in the UV with a power law that mildly depends on g�,
reminiscent of the full solution for Λ ¼ 0 (Fig. 2). The
crossover sets in at k2=M2

pl ≈ cηη�h which is close to but
smaller than the Planck scale. Remarkably, the short
distance mass parameter is constrained within the narrow
range μ� ∈ ð−1; 0Þ and only takes negative values. From

FIG. 3. The graviton spectral function. The inset shows the
reconstructed Euclidean propagator (full line) and the subleading
logarithm (dashed line).

FIG. 4. Real and imaginary part of the graviton propagator in the complex plane. The dashed line indicates the timelike axis.
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the explicit result Eq. (14), and also observing c2η�h < 1, it
is evident that the mass parameter μðkÞ interpolates
smoothly between μ� in the UV and the cosmological
constant −2Λ=k2 in the IR. We conclude that Eqs. (12) and
(14) are viable approximate solutions interpolating between
an asymptotically safe fixed point and general relativity
with a cosmological constant.
Following the same steps as before, we can now find the

spectral function for Λ ≠ 0 by integrating the flow Eq. (8)
with Eq. (4) along the trajectories Eqs. (12) and (14). Our
results are illustrated in Fig. 5. We observe that a positive or
negative cosmological constant does not affect the spectral
function for spectral values above λ≳ ffiffiffiffiffiffiffiffiffij8Λjp

. For smaller
spectral values, the geometry leaves an imprint. For AdS
backgrounds, the cosmological constant acts like a mass
term which leads to a suppression. Conversely, the spectral
function is enhanced for dS backgrounds because Λ > 0
acts like a negative mass-squared term.
The off-shell effects due to the cosmological constant

become even more pronounced if the ghost contributions
are retained. The ghost remains on-shell at k2 compared to
the off-shell graviton at m2

h ¼ k2ð1þ μÞ. We find that for
AdS backgrounds (at μ ¼ 3), off-shell gravitons can
directly scatter into the on-shell multighost continuum
and the flow of fh diverges, while it stays finite for dS
backgrounds. In this off-shell computation, the flat
Minkowski background bears similarities to an external
electric or magnetic field in QED. External backgrounds or
boundary conditions can introduce driving forces or friction
that constantly feed or suppress scattering processes, which
then destroy unitarity much like in open quantum systems.
This analogy allows for a heuristic interpretation of the AdS
singularity in the flow: there the off-shell background
serves as a driving force for graviton scattering processes.
We expect that full on-shell AdS flows with ghost con-
tributions remain finite. Then, graviton and ghost are both
on-shell massless, and it is the off-shell shift of mass scales
that triggers the divergence.
Discussion and conclusion.—We have put forward the

first direct computation of the graviton spectral function in

quantum gravity. The spectral function shows a massless
one-graviton peak and a positive multigraviton scattering
continuum (Fig. 3), interpolating between a constant part
for small and an asymptotically safe scaling regime for
large spectral values. While the spectral function can
always be defined as the imaginary part of the retarded
propagator Eq. (3), the KL representation Eq. (2) only
holds if the propagator has no poles or cuts in the complex
upper half plane. Therefore, it is quite remarkable that the
graviton spectral function and propagator indeed obey the
KL representation Eq. (2) with a positive spectral function
and no ghost or tachyonic instabilities. The absence of the
latter instabilities is crucial for the unitarity of the theory.
This noteworthy result should be contrasted with the
unclear situation in non-Abelian gauge theories where
a similar understanding has not yet been achieved
[35,36,58–62].
On the technical side, and to ensure that the KL

representation Eq. (2) is not inadvertently spoiled by the
momentum cutoff, the spectral flow necessitates spectral
regulators which do not introduce cuts and poles in the
complex upper half plane. In our study, we have explicitly
observed the absence of the latter, which therefore guar-
antees a spectral representation for all scales. Further, we
have advocated the unique Lorentz-invariant spectral cutoff
Eq. (5), at the expense of an additional regularization (6).
The latter can be avoided by using spatial cutoffs, though at
the price of breaking Lorentz invariance. Still, the corre-
sponding flows are linked to the CS spectral flow in well-
defined limits, and offer avenues for systematic error
estimates.
Finally, we note that our findings open a door to

investigate scattering amplitudes and unitarity of fully
quantized gravity [25,56,63–66]. The key building blocks
are the timelike graviton propagator obtained here (Fig. 4),
and the corresponding spectral functions for scattering
vertices. Extracting vertices from Eqs. (6) and (8) is in
reach, albeit technically more demanding than extracting
propagators. We thus look forward to direct tests of
unitarity in asymptotically safe gravity.
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