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We unveil the signature of many-body interference across dynamical regimes of the Bose-Hubbard
model. Increasing the particles’ indistinguishability enhances the temporal fluctuations of few-body
observables, with a dramatic amplification at the onset of quantum chaos. By resolving the exchange
symmetries of partially distinguishable particles, we explain this amplification as the fingerprint of the
initial state’s coherences in the eigenbasis.
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Interacting many-particle dynamics may be considered
the most plausible origin of instabilities, chaos, and
complexity, from astronomical [1,2] to microscopic [3]
scales. Because of the rapid growth of phase space with the
particle number, together with its progressively more
intricate topology, deterministic descriptions quickly hit
the ceiling, enforcing statistical descriptions. Some type of
coarse graining, implicit to such approaches, allows clas-
sifications of dynamical behavior—e.g., as scale invariant,
chaotic, or Markovian—associated with universal charac-
teristics that are formalized, e.g., in the theories of phase
transitions [4,5], random matrices (RMT) [6], or open
quantum systems [7–9]. It is the universal character of these
features that allows robust predictions, since full resolution
of complex dynamics is prohibitive, by their very nature.
On the quantum level, robust features are in such scenarios

essentially controlled by spectral densities and statistics, the
localization properties of eigen- and initial states, the phase-
space dimension, and the timescales over which to make
predictions. This is the unifying view of quantum chaos [10],
which has proven enormously versatile an approach to
analyze complex quantum systems—including paradigmatic
many-particle scenarios in nuclear [11,12] and atomic
physics [13–15], as well as in cold matter [16–19] and black
hole [20] contexts. On this level of description, the specific
many-particle nature of the underlying Hamiltonian does not
appear as an essential ingredient anymore, since all the
features of complex dynamics can also be observed on
the level of single-particle dynamics [10,21] (provided the
phase-space dimension is large enough—such that tori are
not isolating anymore [22]).
Yet, quantum systems composed of identical particles

undeniably exhibit properties that fundamentally distinguish
them from classical many- and single-particle systems,

hardwired in exchange symmetries [23,24], and generating
many-body interference (MBI) phenomena [25–38], thus
with potentially dramatic dynamical relevance. In fact,
modern experiments [19,39–47] already allow one to control
external and internal degrees of freedom (d.o.f.) of many-
particle quantum systems, such that physically identical
particles may be equipped with a continuously tunable
degree of partial distinguishability (PD), and, by this, to
ultimately control the impact of MBI on the dynamics
[32,34–36]. While, traditionally, the RMT approach delib-
erately divides out any symmetry-induced properties [6,10]
(see, however, [48]), it is clear thatMBI, as amanifestation of
the specific system’s particle-exchange symmetry, is one of
those robust features that need to be accounted for in any
theory of complex quantum systems. This raises the ques-
tion: Where in a many-body quantum system’s spectral and
eigenstate structure isMBI encoded andhowcanwedistill its
impact on observable dynamical properties?
In this contribution, we identify a signature of bosonic

MBI in the asymptotic temporal fluctuations v of expect-
ation values around their average. We show that v is
controlled by the coherences of the many-particle initial
state in the eigenbasis, multiplied by the corresponding off-
diagonal elements of the observable, and is therefore
strongly enhanced by particle indistinguishability. We
extract v from the quench dynamics of a Mott state in
the Bose-Hubbard model for increasing values of tunneling
strength J. As shown in Fig. 1, v is sharply peaked around
the value of J where the dynamics becomes chaotic. There,
the initial state is sufficiently delocalized in the eigenbasis
for coherences to build up, but not so much that they are cut
off by the finite energy bandwidth of the observable. By
taking into account the eigenstates’ structure as constrained
by their symmetry under particle exchange, we find
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the strongest dependence of v on the particles’ mutual
(in)distinguishability precisely at that point. Given the very
general ingredients of our theoretical analysis, we conclude
that many-body coherence effects are most intense at the
onset of quantum chaos.
We consider the one-dimensional Bose-Hubbard

model [40,49–52] of PD particles with hard-wall boundary
conditions,

H ¼ −J
X

hi;ji

Xs

σ¼1

a†iσajσ þ
U
2

XL

i¼1

NiðNi − 1Þ; ð1Þ

which is experimentally realizable with ultracold atoms in
optical lattices [19,39–47]. The first index of the creation and
annihilation operators a†iσ; ajσ refers to the L Wannier
orbitals of the lattice, which span the external single-particle
Hilbert spaceHext. The second index σ refers to a basis of the
s-dimensional internal single-particleHilbert space, describ-
ing, e.g., the electronic state of an atom loaded into an optical
lattice. The operatorNi ¼

P
s
σ¼1 a

†
iσaiσ counts the number of

particles on lattice site i, irrespective of their internal state.
We keep the total particle number N ¼ P

L
i¼1Ni fixed. The

two terms inH describe nearest-neighbor tunneling and on-
site interaction of the particles, both of which act exclusively
on the external d.o.f., while the internal d.o.f. remain static.
For indistinguishable bosons, depending on the relative
contribution of both terms in (1), a quantum-chaotic region
has been identified both from spectral statistics and eigen-
state delocalization [19,46,47,53–61]. We here establish its
existence also for PD particles, as an important corollary of
our subsequent analysis.
Of experimental interest are few-particle observables,

e.g., low-order density correlations O ¼ NiNj. Formally,
these are given by products of k creation and k annihilation
operators [32,34], k ≪ N, such that they only access the
marginal information inscribed in the k-particle (kP)
reduced state [36,62]. Moreover, like the Hamiltonian, these
observables are assumed to exclusively act on external d.o.f.,
such that we can consider their restriction toH⊗N

ext and trace
out the internal d.o.f. from the full system state ϱ to obtain
ρ ¼ trintϱ [35,36,62]. Partial distinguishability of the par-
ticles results in entanglement between their external and
internal d.o.f. [35,36], and we use as a measure of indis-
tinguishability the purity γ ¼ trρ2 of the external state,
which is maximal (γ ¼ 1) for indistinguishable particles
and minimal for perfectly distinguishable ones [35,62].
The system’s dynamical equilibration, on asymptotic

timescales, is captured by the temporal variance of expect-
ation values hOðtÞi,

Vart½O� ¼ hOðtÞi2 − hOðtÞi2; ð2Þ
where … indicates the average over the positive time axis
(see Supplemental Material [63]). To formulate general
statements, independent of the specific choice of observable

O, we consider an unbiased average (indicated by c…) over
an orthonormal basis B of the (finite-dimensional) Hilbert
space of external kP observables [64],

v ≔ dVart½O� ¼
X

o∈B
Vart½o�: ð3Þ

This quantity is shown, for k ¼ 2, in Fig. 1 (top panel), for
the dynamics generated by (1), with N ¼ L ¼ 6, initially
one particle per external mode, versus the control parameter
J=U. A variable level of PD is obtained by random
generation [63] of the particles’ internal states jϕii ¼P

σ ϕiσjσi, i ¼ 1;…; L, of the initial Mott state, such as
to smoothly cover the entire range γ ∈ ½1=N!; 1�.
We observe that, for all J=U, v monotonically grows

with γ, i.e., as MBI contributions are enhanced. Moreover,
v exhibits a maximum vmax at J=U ≃ 0.23 and then
decreases to a plateau value v∞ with increasing J=U.
The peak is located at the transition to the (gray-shaded)
parameter range where (1) exhibits fully developed quan-
tum chaos, as identified by the ergodicity properties of its
eigenstates [see discussion of Fig. 2(c) below]. Both v∞
and the enhancement q ¼ vmax=v∞ of the fluctuations at
the peak increase monotonically with γ, as shown in the
inset. In particular, q steeply increases at small γ, when
MBI starts to kick in, which signals a particularly strong
sensitivity to MBI at the transition to quantum chaos. We
observe the same qualitative behavior (see Supplemental
Material [63]) for the experimentally more accessible
average

P
i≠j Vart½NiNj� over all two-point density corre-

lations [29,65]. In the bottom panel of Fig. 1, we also give

FIG. 1. Fluctuations of two-particle observables in the Bose-
Hubbard model (1) for N ¼ L ¼ 6. Top: average temporal
variance v [Eq. (3)] versus J=U, for 100 initial states with one
particle per site and variable particle indistinguishability γ (color
bar). The black curve highlights the case analyzed in Fig. 2(b).
The gray-shaded area indicates the quantum-chaotic region of (1)
[also see Figs. 2(b) and 2(c)]. Insets show the plateau value v∞
(large J=U) and the enhancement q ¼ vmax=v∞ of the maximal
fluctuation vmax, as functions of γ. Bottom: time series of
hN2ðtÞN3ðtÞi for four combinations of J=U and γ (identified
by correspondingly colored crosses in the top panel). For
visibility, the curves for J=U ¼ 4.1 are shifted upward by 0.8.
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the long-time series of hN2ðtÞN3ðtÞi, for four values of J=U
and γ, with strongest fluctuations for intermediate J=U ≃
0.23 and γ ¼ 1, in agreement with the above. The peak in
the fluctuations at the onset of chaos can be qualitatively
explained by the competition between the initial state’s
delocalization and the observable’s bandwidth in the
eigenbasis, as sketched in the top panels of Fig. 2(b).
However, a precise discussion requires one to first consider
the particle-exchange symmetry of PD bosons, which is at
the origin of the overall increase of v with indistinguish-
ability γ.
States of PD bosons are characterized by the coexistence

of several types of mixed particle-exchange symmetries,
alongside the fully symmetric, bosonic symmetry [24,34].
The suppression of v as we make particles more distin-
guishable (i.e., for decreasing γ) can be understood by
the emergence of such nonbosonic contributions to the
dynamics. Indeed, group representation theory, and spe-
cifically the Schur-Weyl duality [66,67], tell us that H, O,
and ρ (as operators on H⊗N

ext ) decompose into symmetry
sectors labeled by the integer partitions of N (or Young
diagrams): λ ¼ ðNÞ; ðN − 1; 1Þ; ðN − 2; 2Þ;…; ð1; 1;…Þ.
While states ρ of perfectly indistinguishable bosons are
entirely supported on the bosonic sector, λ ¼ ðNÞ, states
of PD particles also have finite weights pλ on the other
sectors (

P
λ pλ ¼ 1), as shown in Fig. 2(a) for states with

variable levels of indistinguishability γ (as used as initial
states in Fig. 1). Every sector further decomposes [63]
into νλ identical blocks, each of dimension dλ, and we
denote by fjλ; migm¼1;…;dλ the Young basis [34,66],
built upon the Wannier basis, of one such block.
Diagonalizing H in this very block, we find the eigenstates

jEλ
αi ¼

Pdλ
m¼1 c

λ
αmjλ; mi, with respect to which we re-

present the observable and the initial state, Oλ
αβ ¼

hEλ
αjOjEλ

βi and ρλαβ ¼ νλhEλ
αjρjEλ

βi=pλ. With this definition,
the matrix ρλ has unit trace. If we denote its purity by
γλ ¼ tr½ðρλÞ2�, the purity of ρ reads γ ¼ P

λ p
2
λγλ=νλ.

The above structure allows to decompose v, as given by
Eq. (3), into contributions from individual symmetry
sectors. In the absence of degeneracies between energy
levels and between energy gaps, within each block and
between λ sectors, we obtain [63]

v ¼
X

λ

p2
λvλ; vλ ¼

X

α≠β
jρλαβj2 djOλ

αβj2: ð4Þ

The individual contributions are determined by the squared

weights p2
λ and by the off-diagonal elements jρλαβj2; djOλ

αβj2
of initial state and observable in the eigenbasis. For
indistinguishable particles, γ ¼ 1 and pλ ¼ δλ;ðNÞ, the
fluctuations v ¼ vðNÞ are thus governed by purely bosonic
MBI. As γ decreases, the state starts to distribute over other
sectors, as shown in Fig. 2(a). The fluctuations v are then
doubly suppressed: through the squared weights p2

λ in
Eq. (4), and because of vλ ≤ vðNÞ for all λ, as we will show
in Fig. 2(b). In the limit of distinguishable particles
(smallest γ ¼ 1=N!), the state is distributed over all sectors
and v is minimal.
To elucidate the origin of the maximum of v at the

transition to quantum chaos, we develop a simple statistical
model for the off-diagonal elements of state and observable
appearing in Eq. (4). We assume that the averaged matrix

(a)

(b) (c)(d)

FIG. 2. Ingredients determining the averaged temporal variance v shown in Fig. 1, as functions of J=U and of the particles’
indistinguishability γ. The legend color codes the symmetry sectors λ and indicates their corresponding block dimensions dλ. (a) Weights
pλ [see Eq. (4)] of the initial states for varying γ (vertical black line marks γ ¼ 0.15). (b) Bottom: comparison of vλ (solid), Eq. (4), to the
factorized approximation RλAλ (dashed), Eq. (5), versus J=U, for γ ≃ 0.15. Top: qualitative illustration of the competition between the

delocalization deffλ of the initial state’s component ρλ and the bandwidth Wλ of the averaged observable ˆjOλ
αβj2, in the eigenbasis of

the symmetry sector λ, for three values of J=U. (c) Evolution ofWλ (dashed) and deffλ (solid) with J=U (horizontal lines highlight block
dimensions dλ). Inset: delocalization of the 60 eigenstates closest in energy to the initial state, quantified by the mean value (solid) and
variance (dashed) of their fractal dimensions with respect to the Young basis, identifying the chaotic phase [shaded regions in the inset
and in the main panels of (b) and (c)]. (d) Distribution of the sector-specific enhancement qλ for initial states with variable γλ. For clarity,
(b)–(d) show data for the largest six sectors only.
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elements djOλ
αβj2 vanish outside a band of widthWλ [63,68],

as suggested by the eigenstate thermalization hypothesis
[69–74]. As for the state ρλ, we suppose that it only
populates deffλ consecutive (in energy) eigenstates, as
sketched in the top panels of Fig. 2(b). Otherwise, jρλαβj2
and djOλ

αβj2 are assumed to be statistically independent, such
that we can factorize (see Supplemental Material [63])

vλ ≈ RλAλ; Rλ ¼
P

α≠βjρλαβj2
maxðdeffλ ;WλÞ

;

Aλ ¼
P

α≠β
djOλ
αβj2

dλ
: ð5Þ

This is qualitatively underpinned by Fig. 2(b), for a state
with γ ¼ 0.15, for the largest six symmetry sectors (which
carry 99.2% of ρ). Note that weighting those vλ by the
squares of the associated pλ [black vertical line in Fig. 2(a)]
according to Eq. (4) results in the black curve highlighted in
the upper panel of Fig. 1.
We find that Aλ is, to a good approximation, independent

of J=U and of order 1 in all contributing sectors [63,75].
Consequently, the dependence of vλ on J=U is predomi-
nantly controlled by Rλ. From Rλ [cf. Eq. (5)], we rewrite
the sum over coherences

P
α≠β jρλαβj2 ¼ γλ − Iλ, where the

inverse participation ratio Iλ ¼
P

α jρλααj2 is a measure of
the initial state’s localization in the eigenbasis, to which we
now turn.
Since I−1λ provides an estimate of the number of

eigenstates occupied by the initial state, we use it to define
the state’s effective dimension deffλ ¼ Cλ=Iλ. The multipli-
cative factor Cλ enforces deffλ → dλ in the regime of
strongest delocalization, since, due to residual fluctuations
of ραα, I−1λ generically underestimates the actual number of
populated eigenstates. Figure 2(c) illustrates the delocal-
ization of the initial state seeding the fluctuations displayed
in Fig. 1, in the energy eigenbasis of the largest six sectors
[carrying between 68% (distinguishable particles) and
100% (indistinguishable particles) of the initial state,
cf. Fig. 2(a)]. From the strongly interacting limit
J=U → 0, deffλ grows with increasing tunneling strength,
reaching a maximum in most sectors in the range
J=U ∈ ½3; 4�, before stabilizing at a value of order dλ
for J=U → ∞.
The delocalization of the initial state in the eigenbasis

mirrors the delocalization of the eigenstates in the Young
basis fjλ; migm¼1;…;dλ , which signals the emergence of
quantum chaos. As demonstrated in Refs. [59–61] for
indistinguishable bosons, the chaotic region can be
identified by the ergodicity of eigenstates in the individual
λ sectors, as measured by their fractal dimension
Dλ;α

1 ¼ −
Pdλ

m¼1 jcλαmj2 logdλ jcλαmj2. The inset of Fig. 2(c)

shows the mean value hDλ;α
1 i and the variance VarðDλ;α

1 Þ,

taken over the 60 eigenstates closest in energy to the initial
state, for each λ sector. A substantial delocalization occurs
for 0.23≲ J=U ≲ 11 (shaded area), where the mean values
reach their maxima, accompanied by a drop of the
variances by at least 1 order of magnitude, attesting a
strongly uniform eigenstate structure in all shown sectors.
Consequently, the chaotic domain identified for indistin-
guishable bosons [59] persists for mixed particle-exchange
symmetry.
In contrast to the sharp growth of deffλ , the bandwidthWλ

of the observable only decreases slightly with J=U. We
estimate it by taking the standard deviation of the (nor-

malized) distribution fαðβÞ ∝ djOλ
αβj2 for each α and aver-

aging over α. Figure 2(c) shows the resulting Wλ (dashed
lines) versus J=U, in the largest six sectors.
The behavior of vλ can then be qualitatively understood

in terms of the three regimes sketched at the top of
Fig. 2(b). In the limit J=U → 0 (leftmost sketch), the
initial Mott state is itself an eigenstate and decomposes on
only a few (degenerate) eigenstates jEλ

αi. Accordingly, the
inverse participation ratio is maximal, yielding a minimal
value of the sum over coherences γλ − Iλ, as captured by the
decreasing left tails of the vλ in Fig. 2(b). Instead, for J=U
within and beyond the range of fully developed quantum
chaos (rightmost sketch), the initial state is strongly
delocalized in the eigenbasis (deffλ ≈ dλ), such that many
nonzero coherences jρλαβj2 with jα − βj > Wλ are sup-

pressed by multiplication with a vanishing djOλ
αβj2 in

Eq. (4). In the factorized form Eq. (5), this effect gives
rise to the denominator maxðdeffλ ;WλÞ of Rλ, which results
(with Iλ ≪ γλ, deffλ ≈ dλ > Wλ) in a small asymptotic value
R∞
λ ≈ γλ=dλ ≪ 1 for large J=U. At the transition between

the two parameter ranges (central sketch), the onset of
quantum chaos, where the eigenstates undergo a metamor-
phosis from localized to ergodic, triggers the initial state’s
delocalization in the eigenbasis. There, Rλ exhibits a
maximum, since ρλ already populates a substantial energy
window, resulting in an enhanced contribution by coher-
ences, which are, however, not yet suppressed by the
observable’s bandwidth.
To explain why the effect of PD on v is comparatively

strongest at this maximum, we turn to the dependence of vλ
on the purity γλ of the state ρλ associated with a given
symmetry sector: We have seen that the plateau value
v∞λ ∼ R∞

λ scales linearly with γλ. In Fig. 2(d), we observe
a correlation of the sector-specific enhancement qλ ¼
vmax
λ =v∞λ with γλ (for those sectors contributing most),

signaling a faster-than-linear scaling of the peak height
vmax
λ with γλ. Accordingly, the relative peak height qλ is

largest for the bosonic sector λ ¼ ðNÞ, which always
has maximal purity γðNÞ ¼ 1 [63]. This explains the sharp
growth of q observed in the inset of Fig. 1 for 0≲ γ ≲ 0.2,
as the bosonic contribution to v in Eq. (4) surpasses
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contributions from nonbosonic sectors [Figs. 2(a) and 2(b)].
For γ ≳ 0.4, the bosonic contribution is dominant,
as reflected by the convergence of q toward qðNÞ [cf. inset
Fig. 1].
We have thus shown that many-body coherences popu-

lated by the initial state leave a statistically robust imprint in
the long-time fluctuations of few-particle observables. The
emergence of the chaotic phase induces the delocalization
of the initial state in the eigenbasis, translating into an
augmented contribution of coherences within the observ-
able’s energy bandwidth, and hence leading to the maxi-
mization of fluctuations. This reflects the enhanced
sensitivity of a quantum system’s eigenstate structure
(anchored in the underlying phase-space’s topological
metamorphosis [10]) at the chaos transition, which is
inherited by single-particle as well as by many-particle
transition amplitudes [76–78]. While this fluctuation maxi-
mum is observed for any degree of particle distinguish-
ability, it is significantly amplified as the particles become
more indistinguishable, because of many-body interference
contributions stemming from the bosonic symmetry sector.
Therefore, full resolution of the particle-exchange sym-
metry sectors is indispensable to understand how MBI is
seeded by the spectral and eigenstate structure of a many-
body quantum system and to discern MBI’s impact on the
dynamics. Ultimately, this approach allows the discrimi-
nation of interaction induced from entirely quantum
(due to many-particle interferences) causes of dynamical
complexity.
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