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Nonradiative wireless power transfer (WPT) technology has made considerable progress with the
application of the parity-time (PT) symmetry concept. In this Letter, we extend the standard second-order
PT-symmetric Hamiltonian to a high-order symmetric tridiagonal pseudo-Hermitian Hamiltonian, relaxing
the limitation of multisource/multiload systems based on non-Hermitian physics. We propose a three-mode
pseudo-Hermitian dual-transmitter-single-receiver circuit and demonstrate that robust efficiency and stable
frequency WPT can be attained despite the absence of PT symmetry. In addition, no active tuning is
required when the coupling coefficient between the intermediate transmitter and the receiver is changed.
The application of pseudo-Hermitian theory to classical circuit systems opens up an avenue for expanding
the application of coupled multicoil systems.
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Wireless power transfer (WPT) shows exciting and
promising applications in various fields where physical
connections are not allowed. Driven by modern physical
concepts [1–3] and the ever-increasing practical demand
[4–8], the so-called magnetic resonance mechanism [9] for
the nonradiative WPT technology has experienced rapid
development in recent years. However, conventional WPT
systems are not robust when source and load coils are
dislocated or there is a relative motion, yielding a variation
of mutual coupling. Towards this end, with the introduction
of parity-time (PT)-symmetric systems [10–17], the non-
Hermitian theory [18–20] has been applied to WPT
technology to address the long-standing robustness issue.
With a real frequency spectrum, PT-symmetric WPT
systems can self-select the operating frequency that corre-
sponds to the maximum efficiency and hence guarantee
optimal power transfer over a wide range of transfer
distances without any active tuning [12].
For a PT-symmetric WPT system, it requires gain

elements covering the entire operating frequency range
[12,13,21], which may increase the complexity and cost
since the frequency variation range may be large when the
natural resonant frequency of the coil is high. In addition,
the PT-symmetric phase requires the coupling coefficient k
to be greater than the normalized gain-loss parameter γ
which is typically determined by the resistance of the gain-
loss resonators [22,23]; thus, the efficient working range of
the system is usually limited by the resistance. Although
high-order PT-symmetric systems are expected to achieve
robust WPT with locked frequencies [21,24], the coupling
coefficients between adjacent resonators must be equal to
support the PT-symmetric phase. As a consequence, it
generally requires precise mechanical control of the system,

which can lead to a substantial increase in complexity
and cost.
For non-Hermitian systems, a real spectrum could exist

not only in a PT-symmetric system but also in the so-called
pseudo-Hermitian one whose Hamiltonian satisfies
μHμ−1 ¼ H†, where μ is a Hermitian invertible operator
[25–27] and “†” denotes the Hermitian conjugation,
showing a more general class of Hamiltonians with real
eigenvalues [25,26]. In this Letter, the conventional
PT-symmetric WPT is extended to construct a multicoil
WPT system based on pseudo-Hermitian physics. As a
prototype, we report a dual-transmitter-single-receiver sys-
tem that incorporates nonlinear saturable gain elements into
the source for WPT applications. It is shown that, even
though the system is not PT symmetric, it still has real
eigenfrequencies for varying coupling coefficients, and one
of the eigenfrequencies does not change with respect to the
coupling coefficient in the strong coupling region. Thus, we
can achieve frequency-stable, high-efficiency power trans-
fer in the strong coupling region by utilizing the saturation
characteristic of nonlinear gain elements, while the fre-
quency only changes slightly in the weak coupling region.
We start by constructing a class of higher-order WPT

systems whose Hamiltonians are tridiagonal matrices from
the standard second order PT-symmetric WPT system
[12,14–16], as shown in Fig. 1(a). Within the coupled
mode theory [28], the time evolution of the amplitudes of
the transmitter and receiver resonator for the standard
PT-symmetric dimer, denoted by a ¼ ½a1; a2�T, is governed
by [11–13,22]

i
da
dt

¼ Hstda; ð1Þ
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where

Hstd ¼
�
H11 H12

H21 H22

�
¼ ω0

�
1þ iγ κ

κ 1 − iγ

�
ð2Þ

is the Hamiltonian. Here, H11 ¼ H�
22 ¼ ω0ð1þ iγÞ with γ

denoting gain (or loss) and “*” denoting conjugation, and
H12 ¼ H21 ¼ ω0κ with κ denoting the mutual coupling
between the resonators whose eigenfrequency are ω0. If
the element H11 or H22 is replaced by a second-order block
matrix of the same form as Hstd per se, and the mutual
coupling is only considered for neighboring resonators, i.e.,
H21 ¼ HT

12 ¼ ½κ13; κ23�, where κ13 ¼ 0, we can form a three-
mode system, which can be a two-transmitter-one-receiver
[see Fig. 1(b)], a one-transmitter-two-receiver, or a trans-
mitter-repeater-receiver [see Fig. 1(c)] system. In a similar
manner, chainlike high-order systems can be constructed
whose Hamiltonians are symmetric tridiagonal if the mutual
couplings for nonadjacent resonators are neglected. Since
each resonator can be gainy, lossy, or lossless, the corre-
sponding Hamiltonian is a non-Hermitian symmetric matrix
in general, whose diagonal elements can be complex and the
off-diagonal elements are all real. For high-order systems,
such a Hamiltonian corresponds to a multiple-transmitter,
multiple-receiver WPT system. In addition, a symmetric
tridiagonal Hamiltonian can be PT symmetric or pseudo-
Hermitian, functioning in WPT applications.
We focus on the Hamiltonian, which describes a

dual-transmitter-single-receiver WPT system, as shown
in Fig. 1(b), i.e.,

Hpse ¼
ω0

2

0
B@

2þ ig1 k0 0

k0 2þ ig2 k

0 k 2 − iγ

1
CA; ð3Þ

which has been proved to be a pseudo-Hermitian
Hamiltonian under certain conditions [29]. Here, g1 and
g2 describe the strength of the gain in the transmitter
resonators I and II, respectively; γ is the loss constant of
the receiver resonator; k0 denotes the coupling coefficient
between the two gain resonators; and k denotes the
coupling coefficient between the transmitter resonator II
and the receiver resonator. The natural resonant frequencies
of all the resonators are tuned to be ω0. Such a Hamiltonian
(3) can form a PT-symmetric system [see Fig. 1(c)] when
g1 ¼ γ, g2 ¼ 0, and k0 ¼ k [21,24]. Moreover, even if it is
not PT symmetric, the Hamiltonian (3) can still have real
eigenvalues [30]. By solving the characteristic equation
det ðωI −HpseÞ ¼ 0 (where I denotes an identity matrix),
one arrives at

Δω̃
�
Δω̃2 þ 1

4
ðγg1 þ γg2 − g1g2 − k2 − k20Þ

�

þ i
2

�
ðg1 þ g2 − γÞΔω̃2 þ 1

4
ðg1g2γ þ k20γ − k2g1Þ

�
¼ 0;

ð4Þ

where Δω̃ ¼ ω̃ − 1 with ω̃ ¼ ω=ω0 being the normalized
angular frequency. Instead of forcing the imaginary part of
(4) to be zero [12], we can combine the like terms, which
yields Δω̃½Δω̃�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ̃ − c2

p
=4 − ic=4� ¼ 0 where κ̃ ¼ k20 þ

k2 þ g1g2 − γðg1 þ g2Þ and c ¼ g1 þ g2 − γ. Thus, in the
strong coupling region when k ≥ γ, three modes could
exist, whose eigenfrequencies read as

ω1 ¼ ω0; ð5aÞ

ω2;3 ¼ ω0ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ̃ − c2

p
=4 − ic=4Þ: ð5bÞ

According to (4), provided that the criterion

ðg1g2 þ k20Þγ ¼ k2g1 ð6Þ

is satisfied, the real mode ω ¼ ω1 could exist, no matter if
the modes ω2;3 are complex or real, which provides great
design freedom. Note that the system can support seven
modes in total when taking into account the frequency-
dependent nonlinear gain (see Supplemental Material [31]
for a detailed analysis). Here, we only show the modes
corresponding to the frequency-independent gain, not all
possible modes. In the weak coupling region regime when
k < γ, only two real-eigenvalue states exist and the corre-
sponding eigenfrequencies read as

ω2;3 ¼ ω0ð1�
ffiffiffĩ
κ

p
=2Þ; ð7Þ

and ω1 ¼ ω0 − ic=2 denoting the unstable states; while we
have the criterion

k

g

(a)
R C L

C      L 

∞g

k

g2g1

k0
(c)(b)
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≡

FIG. 1. Schematics of (a) a standard PT-symmetric electronic
dimer, (b) a three-mode pseudo-Hermitian system consisting of
two gain (red) units and one loss (blue) unit, and (c) a conven-
tional three-coil PT-symmetric system consisting of balanced
gain and loss, as well as neutral (gray) electronic molecules. Here,
k or k0 denotes the coupling coefficients between neighboring
resonators; and the mutual coupling between the nonadjacent
resonators [e.g., the transmitter I and receiver in (b)] is assumed to
be negligible.
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ðg1g2γ þ k20γ − k2g1Þc−1 ¼ −κ̃ ð8Þ

to support the stable-frequency mode for the weak coupling
regime. We shall point out that one can control the coupling
regions by changing γ and k0 so that the phase transitionmay
be independent of load, showing a fascinating realm inWPT
applications. In a similar manner, one can handle the
Hamiltonian (3) of a single-transmitter dual-receiver system
by the time-reversal transformation [19,32]. Furthermore,
within the proposed method, one may be able to analyze the
stable frequency mode of the pseudo-Hermitian extensions
on anti-parity-time symmetry systems [33–35] when the
coupling coefficients are pure imaginary, and even systems
with complex coupling coefficients [27,36].
We first consider the case when the strong coupling

region supports three real modes when c ¼ 0. To design a
pseudo-Hermitian WPT system with the known load
denoted by γ, one can determine the two gain coefficients,
g1 and g2, of the system according to the coupling
coefficients, k and k0, as implicated by (6) or (8). In the
strong coupling region when k ≥ γ, the steady-state gains
g1 and g2 can be obtained by solving c ¼ 0 and (6) as
g1;2 ¼ ½γ2 ∓ k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − k2Þ2 þ 4γ2k20

p
�=ð2γÞ. It is evident

that the sum of gain coefficients of the system is always
equal to the loss coefficient γ, i.e., g1 þ g2 ¼ γ. When
k ≫ k0 ¼ γ, the gain coefficient g2 dominates as g2 ≫ g1.
As k is decreased, g2 is decreased while g1 is increased;
when g1 ¼ γ and g2 ¼ 0, the system is in the PT-symmetric
state. In the weak coupling region when k < γ, g1 and g2 are
related according to (8). For a given value of g1 or g2, one
can determine the other gain; for instance, when g2 ¼ 0 for
the intermediate resonator II in the weak coupling region,
one obtain the gain for the source resonator I reads as
g1 ¼ ½γ2 þ k20 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 þ k20Þ2 − 4γ2k2

p
�=ð2γÞ, which is rap-

idly decreased to zero as k is decreased.
In this Letter, we focus on the scenario when k0 ¼ γ to

achieve the same phase transition point as the standard
PT-symmetric system for comparison. As shown in
Figs. 2(a) and 2(b), the proposed three-mode pseudo-
Hermitian system has a unique frequency characteristic
with an open band gap, while the conventional PT-
symmetric systems have an exceptional point in the
transition from the strong coupling region to the weak
coupling region [see in Figs. 2(c)–2(f)]. Such a unique
frequency characteristic reflects the asymmetry of the
pseudo-Hermitian system, which can be tuned by changing
the ratio of coupling coefficients, i.e., k0=k. In addition, the
system has a steady-state frequency that does not vary with
k in the strong coupling region when k ≥ γ, while its
steady-state frequency can be designed in a narrow fre-
quency range in the weak coupling region when k < γ.
Therefore, such a three-coil pseudo-Hermitian system can
be used to realize WPT with an almost stable operating
frequency, even in the weak coupling regime. Note that the
steady-state frequencywill inevitably undergo discontinuous

jumps when the system whose operating frequency is set to
ω1 in the strong coupling region enters into the weak
coupling region through the phase transition point, showing
a possibility to further enhance the sensitivity in wireless
sensing applications [23,37,38].
As shown in Fig. 2(a), the eigenfrequency ω1 ¼ ω0 is

locked to the natural frequency of the LC tank, which is
independent of the coupling coefficient k in the strong
coupling region. For the eigenstates denoted by ω2;3, only a
small derivation of � ffiffiffĩ

κ
p

=2 of the eigenfrequency is
presented, both for the strong and weak coupling regime.
Therefore, high-efficiency power transfer always appears
around ω0. Moreover, the pseudo-Hermitian system relaxes
the limitation that the coupling coefficients k0 and k must
be identical for the conventional three-coil PT-symmetric
system. Compared with the standard second-order PT-
symmetric system, whose eigenfrequencies are sensitive
to the change of k and γ [see Figs. 2(e) and 2(f)] in the
strong coupling region, the proposed pseudo-Hermitian

FIG. 2. Evolution of the real (left panel) and imaginary (right
panel) parts of the normalized eigenfrequencies ω̃ ¼ ω=ω0 as a
function of the coupling coefficient k for various non-Hermitian
systems, i.e., (a),(b) three-mode pseudo-Hermitian system, (c),(d)
three-coil PT-symmetric system, and (e),(f) standard PT-sym-
metric system. For all three systems, the loss parameter reads
γ ¼ 0.078. Here, the blue curves denote the conjugate solution of
ω, while the red curves denote the additional solution of ω1 for
three-mode systems. The ideal three-coil PT-symmetric WPT
system always works in the state [red line in (c),(d)] where the
frequency does not change with respect to the coupling coef-
ficient k. The strong coupling regions are denoted by shading.
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system is more friendly when designing the gain elements,
which is expected to achieve a higher power transmission
by combining the two transmitters.
The proposed three-mode pseudo-Hermitian system has

unique power transfer properties. In the strong coupling
region when k ≥ γ, the ratios of the resonators’ amplitudes,
respectively, reads a1=a2 ¼ ik0=g1 and a3=a2 ¼ −ik=γ
for the mode ω1 ¼ ω0; while in the weak coupling region
when k < γ, they are a1=a2 ¼ k0=ð−ig1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃ þ γg2

p Þ and
a3=a2 ¼ k=ðiγ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ̃ þ γg2
p Þ, respectively. Figures 3(a) and

3(b) plot the amplitude ratios as functions of the coupling
coefficients. When the steady-state frequency switches
from ω1 (k ≥ γ in the strong coupling region) to ω2;3
(k < γ in the weak coupling region) at the phase transition
point k0 ¼ 0.078, a small but abrupt change in the
amplitude ratio appears. Although it would lead to a small,
abrupt efficiency change around the transition point, it does
not affect the stability of the system. In the strong coupling
region, the range of the amplitude ratio for the steady state
denoted by ω1 is greater than that for the state denoted by
ω2 or ω3. Such varying amplitude ratios demonstrate the
possibility of implementing a transformer in WPT systems,
which may be beneficial for the applications of extracting
energy from high-voltage power transmission lines.
Moreover, as illustrated in Figs. 3(c) and 3(d), when the
system frequency is locked at ω1 ¼ ω0 in the strong
coupling region, the phase differences between the reso-
nators are constant, which is more friendly for monitoring
the system operation state. As for the power transmission
efficiency, while it may not be constant for the proposed
system due to the fluctuating amplitude ratio with regard to
the coupling coefficient k, it is essentially stable in the
strong coupling region if the quality factors of the reso-
nators are sufficiently high [21,31,39].

The implementation of gain elements in non-Hermitian
systems is crucial for WPT applications. According to the
criterion (6), the gain strengths g’s are related to the
coupling coefficient k. To avoid active tuning of gain
when k changes, nonlinear gain elements consisting of an
operational amplifier (op-amp) can be adopted [11,12,37],
as illustrated in the inset of Fig. 1. Because of the
nonlinearity and saturation behaviors of op-amps [12],
the actual gain gnðjanjÞ (n ¼ 1, 2) of the transmitters
depends on the mode amplitude janj, which will decrease
as janj is increased beyond the threshold. If the op-amps
are configured to saturation with the initial unsaturated
gains gn;i being respectively greater than or equal to the
corresponding steady-state desired gains, i.e., gn;i ≥ gn,
the system will eventually go into the stable oscillating
state [31].
We have verified the theory via circuit simulations and

experiments of the two-transmitter-one-receiver system
[31]. All the coils are tuned to be resonant at 2 MHz,
and the initial gains are g1i ¼ 0.113 and g2i ¼ 0.005,
respectively. As a result, only a single steady state ω1 ¼
ω0 exhibits in the strong coupling region since ω2;3 are
complex. Figure 4 shows the steady-state operating fre-
quency fs, resonators’ voltage ratios, and the power trans-
mission efficiency (PTE) ηPTE with respect to the coupling
coefficient k. The experimental results show good agree-
ment with the simulated and theoretical results. As shown
in Fig. 4(a), the operating frequency is kept at about 2 MHz

FIG. 3. Evolution of the amplitude ratios (a) ja1=a2j and
(b) ja3=a2j, and the phase differences ϕ1 − ϕ2 and (d) ϕ3 − ϕ2

as functions of the coupling coefficient k at steady state. In all
the subfigures, the gray vertical reference line indicates k ¼
γ ¼ 0.078.
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FIG. 4. (a) Steady-state frequency fs, (b) voltage ratios V1=V2

(red for the left y axis) and V3=V2 (blue for the right y axis), and
(c) power transmission efficiency ηPTE as functions of the
coupling coefficient k. Theoretical (cal.), simulated (sim.) and
experimental (exp.) results are illustrated by solid curves, dashed
curves, and hollow markers, respectively. The shading regions
indicate k ≥ γ ¼ 0.078. The inset of (c) shows a photo of our
experiment setup.
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as the coupling coefficient k varies from 0.078 to approx-
imately 0.2 in the strong coupling region, without any
tuning of the circuit. In the strong coupling region, the
system has almost stable transmission efficiency, as illus-
trated in Fig. 4(b). In addition, the efficiency would slightly
drop due to the overcoupling as k increased. Both the
simulation and experimental results demonstrate the tran-
sition of the steady-state frequency at around k ¼ γ, which
implicates that the frequency band gap exhibits in the
system. Since the amplitude ratios of the resonator are
discontinuous at the transition point k ¼ γ, a slight
abrupt change of the transmission efficiency appears.
Such a transition would only introduce slight changes in
frequency and efficiency in the weak coupling region,
which would not affect the stable operation of the WPT
system.
By optimizing the loss constant γ and/or the coupling

coefficient k0, one may further improve the efficiency and
the robustness of the proposed system. Moreover, if aiming
to design a practical system with a single transmitter, no
intermediate gain element is required [31]. For a lossy relay
coil, assuming the additional gain g2 ¼ −γs2, we can also
achieve a frequency-stable three-coil WPT system provided
that the gain of the transmitter reads g1 ¼ k20γ=ðk2 þ γs2γÞ.
Given that the amplitude ratios of the system are fixed,
highly efficient voltage-adjustable switch-mode amplifiers
could be designed for a practical system to achieve constant
power output. In addition, based on the concept of
generalized PT symmetry [23,40], the inductance of the
proposed system can be further optimized to facilitate coil
design. For practical systems, high-efficiency switch-mode
amplifiers [13–15] can be used as gain elements to achieve
a high overall system efficiency.
In summary, we have reported a three-mode pseudo-

Hermitian system constituting nonlinear gain-saturating
elements for robust dynamic wireless power transfer
operated at an almost fixed frequency without any active
tuning. The proposed system always has real eigenfre-
quencies, even though it is not PT symmetric. The system
also exhibits varying amplitude ratios, promising multi-
functional platforms for transformers and wireless power
transfer. Our work reveals that the multimode electronic
circuit concept based on non-Hermitian physics with non-
linear gain holds promising for efficient dynamic wireless
power transfer without active tuning. Meanwhile, our
theory is expected to be applicable to handle multicoil
WPT systems when relay coils are lossy, while the existing
PT-symmetric systems generally fail [41,42]. Although the
dual-transmitter-single-receiver topology is considered
here, one may readily apply the time-reversal transformation
[19] to handle the single-transmitter-dual-receiver circuit
[43]. Moreover, our research may open a door to the
investigation of the multiple-transmitter-one-receiver,

one-transmitter-multiple-receiver, and multiple-transmitter-
multiple-receiver WPT systems by virtue of pseudo-
Hermitian physics.
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