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Latent symmetries are hidden symmetries which become manifest by performing a reduction of a given
discrete system into an effective lower-dimensional one. We show how latent symmetries can be leveraged
for continuous wave setups in the form of acoustic networks. These are systematically designed to possess
latent-symmetry induced pointwise amplitude parity between selected waveguide junctions for all low
frequency eigenmodes. We develop a modular principle to interconnect latently symmetric networks to
feature multiple latently symmetric junction pairs. By connecting such networks to a mirror symmetric
subsystem, we design asymmetric setups featuring eigenmodes with domain-wise parity. Bridging the gap
between discrete and continuous models, our work takes a pivotal step towards exploiting hidden
geometrical symmetries in realistic wave setups.
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Introduction.—Symmetries dictate the appearance of
fundamental physical laws and allow us to make detailed
predictions without solving the underlying equations of
motion [1,2]. Selection rules for atoms and molecules [3,4],
the emergence of Bloch states and band structures in
crystals [5], and the explanation of spectral degeneracies
[4] are all examples for the importance of symmetries.
Recently the concept of latent symmetry has been

introduced, that is, a symmetry not of an original
Hamiltonian, but of an equivalent dimensionally reduced
effective Hamiltonian [6]. Importantly, the presence of a
latent symmetry leaves its fingerprints in the original
eigenvectors, thereby showing, e.g., a parity symmetry
of certain eigenvector components only. This concept has
proven fruitful in many different areas such as the analysis
of complex networks [6–8], the explanation of a class of
accidental degeneracies [9], and can be used to design
lattices with flat bands [10], a topic of major current interest
[11,12]. Besides this, a certain subclass of latent sym-
metries can be closely linked to the graph-theoretical
concept of cospectrality [13–15], which is of importance
in the context of (almost) perfect state transfer [16–20].
The theory of latent symmetries has so far been devel-

oped and applied only to discrete systems. In this Letter, we
take the conceptual step of extending and applying the
concept of latent symmetry to a continuous system. We
systematically design networks with pointwise amplitude
parity between selected waveguide junctions for all low
frequency eigenmodes. Our construction principle
yields asymmetric setups which possess eigenmodes with
domain-wise parity.

Setup.—We investigate the eigenmodes of acoustic net-
works described by the 3D-Helmholtz equation

Δpþ k2p ¼ 0 ð1Þ

with Neumann hard boundary (wall) conditions on the rigid
surfaces of waveguides or cavities, and with pðrÞ denoting
the acoustic pressure field. For simplicity, we consider the
case where all structures possess the same thickness d, so
that Eq. (1) can be separated into a 2D (x-y plane) and a 1D
(z-axis) problem.
We begin with networks formed by interconnecting

waveguides of equal length L. If such a network is spatially
mirror symmetric, its eigenmodes have odd or even parity
under the reflection, that is, pðRðrÞÞ ¼ �pðrÞ for all
points r, with RðrÞ denoting the reflection operation. In
contrast to that, we design asymmetric networks that
feature pointwise parity in their low-frequency eigenmo-
des, that is, pðrnÞ ¼ �pðrmÞ only for specific locations rn,
rm. To reach this goal, we design the network to feature a
latent symmetry by tuning the waveguide widths. In a next
step, we show that those networks can be easily augmented
by mirror-symmetric cavity subsystems such that (i) the
coupled system features no geometrical symmetry while
(ii) the low-frequency eigenmodes have domain-wise
parity, that is, definite parity everywhere in the cavities.
Latent symmetries in eigenvalue problems.—Let us start

by sketching the theory of latent symmetries [6]. It is based
on the ordinary eigenvalue problem

HY ¼ λY; ð2Þ
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with H denoting the Hamiltonian represented by a
Hermitian matrix. To define latent symmetries, we first
partition the underlying setup into two subsystems, S and
its complement S, and write Eq. (2) in block form as

�
HSS HSS

HSS HSS

��
YS

YS

�
¼ λ

�
YS

YS

�
: ð3Þ

Assuming for simplicity that λ1 −HSS is invertible for any
eigenvalue ofH, we can formally solve the second equation
for YS and insert it into the first. This gives us the nonlinear
eigenvalue problem

eHSðλÞYS ¼ λYS ð4Þ

with the effective Hamiltonian eHSðλÞ ¼ HSS þ
HSSðλ1 −HSSÞ−1HSS [6,9,13,21]. eHSðλÞ is known as the
“isospectral reduction” ofH, since in general its (nonlinear)
eigenvalues are equal to that of the original HamiltonianH.
The effective Hamiltonian may or may not have sym-

metries. If it does, that is, if ½eHSðλÞ;M� ¼ 0 for all λ, where
the normal matrix M describes the symmetry operation,
then the original Hamiltonian H is said to be latently
symmetric in S. A latent symmetry has a profound impact
on the eigenvectors Y of H: First, it follows from Eq. (4)
that the restriction YS of Y on S must be an eigenvector ofeHSðλÞ. Now, since eHSðλÞ is M symmetric, it follows that
(assuming no degeneracies) YS must follow this symmetry
as well. In other words, Y must be locallyM symmetric on
S. Thus, by tuning the system to feature a latent symmetry
with a specific matrix M, it is possible to tailor local
properties of the eigenvectors. To demonstrate the principle
of latent symmetry induced design of local properties, we
will here focus on the special case of a latent mirror

symmetry (LMS) described by M ≡ Σ ¼
�
0 1

1 0

�
. Since

the eigenvalues of Σ are σ ¼ �1, this means that one can
choose the eigenvectors of H to have definite parity on
S ≔ fu; vg. That is, they feature pointwise parity [22].
Latent symmetry in acoustic waveguides.—In order to

construct latently symmetric networks of acoustic wave-
guides, we focus on narrow waveguides, wn ≪ L, d ≪ L,
such that the propagation of low-frequency waves in the
individual waveguides with width wn and identical thick-
ness d effectively becomes one-dimensional (see Sec. I of
the Supplemental Material [23] for more details). In this
regime, which we will consider throughout this work, the
eigenmode amplitudes at the endpoints of waveguides can
be described by the generalized eigenvalue problem
(gEVP) [30–33]

AX ¼ λBX; ð5Þ

with λ ¼ cosðkLÞ, An;m ¼ wn;m, and B diagonal with
Bn;n ¼

P
m wn;m. Here, wn;m denotes the width of the

waveguide between the end points n and m, with wn;m ¼
0 if there is no waveguide. The eigenvector X ¼
ðp1;…; pNÞT corresponds to the acoustic pressure on the
end points of the waveguides. For our first example, the
three-waveguide setup of Fig. 1(a), the discrete problem is
four dimensional, and we have

FIG. 1. (a) A setup consisting of three waveguides (top) and its
mapping to a discrete model (bottom; see text for details). For
w1;2 ¼ w3;4 þ w2;3, the setup features a latent mirror symmetry
with S ¼ f1; 3g, resulting in pointwise parity of the eigenfunc-
tions. (b) The amplitude ratio pðαÞðxÞ=pðαÞð0Þ [evaluated along
the blue dashed line depicted in (a)] for the first α ¼ 1;…; 7
eigenmodes of the continuous Eq. (1). (c) The behavior of

pðαÞ
3 =pðαÞ

1 for the nonplane wave modes α ¼ f2; 3; 5; 6g for
varying wmax=L with wmax ¼ maxðw1;2; w2;3; w3;4Þ. For the
modes depicted in (b), wmax=L ¼ 0.4.
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A ¼

0
BBB@

0 w1;2 0 0

w1;2 0 w2;3 0

0 w2;3 0 w3;4

0 0 w3;4 0

1
CCCA; ð6Þ

B ¼

0
BBB@

w1;2 0 0 0

0 w1;2 þ w2;3 0 0

0 0 w2;3 þ w3;4 0

0 0 0 w3;4

1
CCCA: ð7Þ

Before we continue, we note that the gEVP in the form of
Eq. (5) with A, B real-symmetric and B positive definite is
widespread; it occurs in electronic structure models in a
nonorthogonal basis in quantum chemistry [34], spring-
mass systems, molecular or mechanical vibrations [3,35],
and it also appears naturally in numerical finite element
treatments of wave equations [36]. Now, since the matrix B
is positive definite in all these cases, we can convert Eq. (5)
to the ordinary symmetric eigenvalue problem Eq. (2)
with Y ¼ ffiffiffiffi

B
p

X and the real-symmetric “Hamiltonian”
H ¼ ffiffiffiffi

B
p −1A

ffiffiffiffi
B

p −1. This convenient transformation allows
us to extend the concept of latent symmetries from ordinary
[Eq. (2)] to generalized eigenvalue problems [Eq. (5)].
Let us now analyze the case where the Hamiltonian H

corresponding to a gEVP features a LMS for S ≔ fu; vg.
Assuming for simplicity that H features no degeneracies
(see Sec. II of the Supplemental Material [23] for details),
this latent symmetry induces point-wise parity on u; v onto
the eigenvectors Y of H. Depending on the structure of B,
the eigenvectors X ¼ ffiffiffiffi

B
p −1Y of Eq. (5) then may or may

not feature pointwise parity. In the special case of acoustic
waveguides, however, a LMS of H automatically induces
pointwise parity, that is, Xu ¼ �Xv for any eigenvector X
(see Secs. IC and II in the Supplemental Material [23]).
We now apply the concept of latent symmetries to a

concrete setup. In Fig. 1, we show a particularly simple
waveguide network which, for w1;2 ¼ w3;4 þ w2;3, features
a LMS for the two junctions S ¼ f1; 3g. Thus, the
eigenmodes X of the gEVP Eq. (5) have pointwise parity
on 1,3; the corresponding Hamiltonian has no degeneracy.
As a consequence, the acoustic pressure at the end points 1
and 3 [see Fig. 1(a)] has pointwise parity for low-frequency
eigenmodes and narrow waveguides.
Two aspects are noteworthy. First, while the Hamiltonian

H describing Fig. 1(a) is only four dimensional, the
pointwise parity induced by its LMS has an impact on
more than four eigenmodes of the underlying continuous
Eq. (1). Indeed, and as we show in Sec. I of the
Supplemental Material [23], as long as the low-frequency
limit (monomode approximation) is valid, every eigenmode
p of Eq. (1) features pointwise parity; this is demonstrated
in Fig. 1(b). Second, we stress that our theoretical

considerations of a latently mirror symmetric waveguide
network (LMSWN) are based on approximating Eq. (1) by
a discrete gEVP. Thus, one would expect that our results are
valid only in the limiting case of very narrow waveguides.
The pointwise parity of eigenmodes, however, is robust and
it approximately persists even when departing from the
limiting case wmax=L → 0, up to roughly wmax=L ≃ 0.2.
This is shown in Fig. 1(c). There, we scale all widths by an
identical factor and analyze the deviation from −1 of the

ratio pðαÞ
1 =pðαÞ

3 for the eigenmodes α ¼ f2; 3; 5; 6g in
dependence of this scaling factor. For modes 1,4,7, we

note that the pointwise parity is perfect, pðαÞ
1 =pðαÞ

3 ¼ 1,
because these modes—for which kL is a multiple of π—are
exact solutions to the PDE of Eq. (1). Irrespective of the
individual waveguide widths, these modes do always exist,

and as can easily be shown, they exactly fulfill pðαÞ
1 =pðαÞ

3 ¼
1 even far away from the limit wn;m ≪ L.
Network design.—Having demonstrated a first instance

of a LMSWN, let us now address the general construction
of such networks. This task is equivalent to finding a
network geometry with suitable widths wi;j and two sites
S ¼ fu; vg for which eHSðλÞ commutes, for all λ, with

Σ ¼
�
0 1

1 0

�
. Expanding eHSðλÞ into a power series in λ

shows that this commutation is equivalent to [9,13]

ðHkÞu;u ¼ ðHkÞv;v ∀ 1 ≤ k ≤ N − 1; ð8Þ

with N denoting the dimension of H. Interestingly, an
analysis of theseN − 1 conditions on the diagonal elements
of the matrix powers of H allows us to derive generic rules
that a LMSWN has to fulfill (see Supplemental Material
[23], Sec. I C). For example, the sum of widths of wave-
guides adjacent to u and v must be identical; that
is, Bu;u ¼ Bv;v.
The difficulty of finding a latently mirror symmetric

configuration clearly depends on the network size and
topology. In general, for a given H of size N, the choice of
S would be done in principle by trying all NðN − 1Þ=2
possible pairs fu; vg and testing whether they obey Eq. (8).
For small acoustic networks, as the one in Fig. 1, a suitable
combination of widths and S can be even found analytically
yielding the simple condition w1;2 ¼ w3;4 þ w2;3; but for
larger networks the complexity may become too high.
Fortunately, there is an alternative means for this problem:
As we now demonstrate, smaller LMSWNs can be com-
bined to form arbitrarily large networks: Given two
waveguide networks with latent mirror symmetries for
Sn ¼ fun; vng, n ¼ 1, 2, we connect u1 to u2 by a narrow
waveguide of arbitrary (though small) width w, and v1 to v2
by another waveguide with identical width w. As shown in
Sec. III of the Supplemental Material [23], the resulting
larger network is then guaranteed to feature latent mirror
symmetries for both S1 and S2. Figure 2(a) demonstrates
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this principle. Here, A denotes the first network, with
S1 ¼ f1; 3g, which is in fact the three-waveguide network
we already encountered in Fig. 1. B denotes a second
network of five waveguides which—by finding suitable
widths and S ¼ fu; vg fulfilling Eq. (8)—has been
designed to feature a LMS for S2 ¼ f6; 10g. Figure 2(b)
shows an eigenmode of the resulting setup featuring
pointwise parity for all low-frequency eigenmodes both
on S1 and S2, as predicted. The above principle can be
repeated by analogously connecting a third network with
S3 ¼ fu3; v3g to either u1, v1 or u2, v2. A fourth network
can then be connected to either of the three Si, and so on,
ultimately arriving at a modular construction principle.

Domain-wise parity.—Instead of coupling two latently
symmetric networks, as done in Figs. 2(a) and 2(b), we
could just as well couple a subsystem Bwith a conventional
global geometrical symmetry to a latently symmetric net-
work A. Interestingly, as we now demonstrate in Fig. 2(c),
this can even be done when B is no longer a network of thin
waveguides but a spatially extended setup. In that figure, B
is an extended, mirror-symmetric cavity, while A corre-
sponds to the setup from Fig. 2(b).
To understand the outcome of this procedure, let us

investigate the composite system of the waveguide network
(ending at points M1;2) and the two waveguides w which
end at the two points Q1;2. Because of latent symmetry, all

FIG. 2. (a) Connecting two networks A and B with latent mirror symmetries (in A for f1; 3g, in B for f6; 10g) through the
corresponding latent symmetry points (see text for details). For the latent symmetry in B, the widths need to be chosen as w5;6 ¼
w9;10 − w6;7 and w8;9 ¼ w6;7w7;8w9;10

w5;6w7;8þw6;7w9;10
. (b1) shows the ninth eigenmode of the network constructed by combining A and B in the above

manner. The depicted eigenmode features pointwise parity on the junction points f1; 3g and f6; 10g (center points of the upper/lower
circles, respectively). (c1) shows the tenth eigenmode of the system that is obtained by augmenting (b) with a cavity on top. This mode
features domain-wise parity in the coupled-cavity subsystem. (b2) and (c2) show the absolute values of the amplitude ratio μ (see text)
on the center of the red circles in the corresponding setup. For both (b1) and (c1), we have wmax=L ¼ 0.2.
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eigenmodes of this setup have parity, both on M1;2 and
on Q1;2. When connecting this composite setup to the
extended cavity, the latter “sees” only a two-port setup with
an impedance relation p ¼ Zp0, where the two-dimensional
vectors p;p0 denote the pressure and normal derivative,
respectively, at the two pointsQ1,Q2. Now, as shown in the
Supplemental Material [23], in the low-frequency approxi-
mation we have Z11ðkÞ ¼ Z22ðkÞ for all k. As a result, the
eigenmodes of the entire interconnected geometry have
definite parity in the complete subsystem B. What is
unexpected about this example is that the eigenmodes
display this parity even though the geometry of the overall
network is not symmetric. The domain-wise parity
observed in Fig. 2(c) is an interesting extension of the
other case examples shown in this work, whose eigenm-
odes featured only pointwise parity.
Similarly to our first setup of Fig. 1, the observed parity

is robust and it remains approximately valid even for the
case of waveguides that are not so thin. This is demon-
strated in Figs. 2(b2) and 2(c2), where we show the
absolute value jμj of the pressure ratio μ ¼ pðαÞ

u =pðαÞ
v for

the first 10 eigenmodes, with u, v denoting the center points
of the two red circles in Figs. 2(b1) and 2(c1).
Concluding remarks.—Geometrical symmetries form

the basis of regularities and order in wave patterns. We
have demonstrated that pointwise or even domain-wise
parities can be systematically introduced in correspond-
ingly asymmetric acoustic networks in their low-frequency
eigenmodes. The origins of this behavior are hidden or
latent symmetries which can be revealed by an effective
Hamiltonian approach. This constitutes the basis for the
design of networks with multiple latent symmetries. By
putting symmetric or antisymmetric point sources where
the eigenmodes feature latent-symmetry induced pointwise
parity, one may control the symmetry properties of the
wave field. Within this perspective, when opening up
the waveguide network one can imagine to control, e.g.,
the reflection coefficients of the corresponding multiport
scattering setup in the low-frequency regime [37]. In a more
far-reaching perspective latent symmetries might be gene-
ralized to PT symmetric or topological waves.
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