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We consider short-range Ising spin glasses in equilibrium at infinite system size, and prove that, for fixed
bond realization and a given Gibbs state drawn from a suitable metastate, each translation and locally
invariant function (for example, self-overlaps) of a single pure state in the decomposition of the Gibbs state
takes the same value for all the pure states in that Gibbs state. We describe several significant applications to
spin glasses.
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The nature of the spin-glass (SG) phase in classical
finite-dimensional short-range models remains one of the
outstanding unsolved problems in statistical mechanics.
Although important fundamental questions remain open,
considerable analytical and numerical progress has been
made, especially on the rigorous theory of mean-field SGs
[1–8] and short-range SGs (for a recent review, see
Ref. [9]). For the mean-field case, which corresponds to
infinite-range models such as the Sherrington-Kirkpatrick
(SK) Ising Hamiltonian [10], most of the fundamental
problems have been solved by the replica symmetry-
breaking (RSB) theory [11–15].
For the short-range case, in which we will focus on Ising

spins (sx ¼ �1 for all sites x) and infinite system size,
there is an unresolved controversy about whether the low-
temperature phase involves many ordered or “pure” states
as in RSB, or only one or two, as in the scaling-droplet (SD)
picture [16–19]. Rigorous results have been obtained using
metastates [20–23]; a metastate is a probability distribution
on equilibrium (i.e., Gibbs) states, with covariance proper-
ties we describe below. In the SD picture, the metastate is
trivial (i.e., supported on a single Gibbs state), while for
RSB behavior the metastate is necessarily nontrivial
[9,21–26], and a Gibbs state in its support is a nontrivial
mixture of many pure states (if there is global spin-flip
symmetry under sx → −sx for all x, these are not all related
by symmetry).
In this Letter, we establish a further necessary property of

pictures with Gibbs states that are nontrivial mixtures of
pure states. Loosely, for systems without spin-flip invari-
ance, there is no macroscopic order parameter that can
distinguish between the pure states in a Gibbs state; i.e., for
given bonds and Gibbs states (drawn from a metastate,
which can be trivial or nontrivial), all pure states in the

Gibbs state “look alike,” in that each macroscopic property
(defined precisely later) defined for any single pure state
takes the same value in all the pure states. For example, all
pure states in a given Gibbs state have the same self-
overlap, magnetization, and internal energy density.
Similarly, with spin-flip invariance, pure states cannot be
distinguished from one another by flip-invariant order
parameters (note that magnetization is not flip invariant).
We call this property “single-replica equivalence.” (A simi-
lar statement, that self-overlaps almost surely take a
single value in infinite-range models, assuming that the
Ghirlanda-Guerra identities [2] hold, was proved in
Ref. [27].) This result has a number of immediate appli-
cations that we describe later. For technical reasons, the
proof of our result is for models with interactions within
groups of p spins, for all p (or all even p); the case of only
nearest-neighbor pair interactions is not included, but it can
be approached arbitrarily closely.
Single-replica equivalence is so named because of its

similarity to replica equivalence [28]. Here the term
“replica” refers to real replicas—i.e., pure states drawn
from some distribution. Replica equivalence asserts that
functions of overlaps of distinct replicas are independent of
the choice of one of the replicas; this is not the property that
we discuss, but it may possibly be related.
We now define notations and review concepts that

will be needed in what follows. The sites x lie in the
d-dimensional cubic lattice Zd, and we define s¼ðsxÞx∈Zd .
Let X denote a nonempty finite set of distinct sites,
X the set of all such X, and sX ¼ Q

x∈X sx. A general
Hamiltonian is then

HJðsÞ ¼ −
X
X∈X

JXsX; ð1Þ
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where J ¼ ðJXÞX∈X is an indexed set of independent
random variables (bonds), one associated with each
X ∈ X , so the joint distribution νðJÞ of JX for all X is a
translation-invariant product (over X) distribution; we write
expectation under ν as E � � �. We define a “mixed p-spin
model” of this form (“mixed” means the sum is over all
X ∈ X , and p denotes values of jXj) to be (I) “short range”
if
P

X∶x∈X EjJXj < ∞ for any x (see, e.g., Ref. [29]), and
(II) “n.i.p.” if, for every X such that VarJX > 0 (possibly
infinite), there are no isolated points in the support of the
marginal distribution for JX [e.g., the marginal is continu-
ous (i.e., atomless)]. For spin-flip invariance of HJ under
s → −s≡ ð−sxÞx∈Zd , we impose also (III) JX ¼ 0 for jXj
odd. The familiar EA Hamiltonian [30] is a special case of
these models in which JX ¼ 0 if X is neither a nearest-
neighbor pair nor a single site. For a SG, one typically
assumes that JX has mean zero (except possibly for
jXj ¼ 1, the single-site magnetic field terms), but the
mean-zero assumption is neither required nor assumed in
the theorems and proofs below.
States Γ [i.e., probability distributions ΓðsÞ on configu-

rations s] are uniquely determined by the values of the
expectations hsXiΓ in Γ as X runs through X . An (infinite-
volume) Gibbs state is defined for a given short-range
Hamiltonian, such as HJðsÞ, and for fixed temperature T
(0 < T < ∞) as a state that obeys the Dobrushin-Lanford-
Ruelle conditions [31,32]. A convex combination (i.e., a
mixture) of Gibbs states is again a Gibbs state.
A Gibbs state may be either pure or mixed. A pure state

is a Gibbs state that is extremal—i.e., not expressible as a
mixture of other Gibbs states. Equivalently, it obeys a
strong clustering property [31,32] that implies the decay of
connected correlations to zero. Distinct pure states put all
their probability on disjoint sets of spin configurations
[31,32]. Wewill denote pure states by Γα and expectation in
Γα as h� � �iα (α is an index). Any Gibbs state Γ can be
expressed, or “decomposed,” as a unique mixture of pure
states [31]; that is,

Γ ¼
X
α

wαΓα ð2Þ

for a set of non-negative weights wα ¼ wΓðαÞ that obeyP
α wα ¼ 1 (i.e., probabilities) and which depend on J and

Γ. Equation (2) corresponds to a countable decompo-
sition, but our results hold in the general case, where
every sum

P
α wα � � � with weights wα becomes an integralR

dwΓðαÞ � � � with probability measure dwΓðαÞ. A spin-flip
transformation sends any state Γ to a state Γ̄, defined by
Γ̄ðsÞ ¼ Γð−sÞ. Γ̄ ¼ Γ if and only if hsXiΓ ¼ 0 whenever
jXj is odd. Spin-flip symmetry of HJ implies that for each
pure state Γα there is a flipped pure state Γᾱ ¼ Γα, and that
for a flip-invariant Gibbs state we have wᾱ ¼ wα for all α.
Two other types of transformation will be important. The

first type are translations: if all bonds in a given J are

translated by a fixed amount, then the same translation
applied to any Gibbs state Γ for J produces a corresponding
Gibbs state for the translated J. The second type are local
transformations: for any ΔJX ≠ 0 for finitely many X, a
state Γ transforms to a state Γ0 defined by [20,33]

h� � �iΓ → h� � �iΓ0 ¼ h� � � eβ
P

X
ΔJXsXiΓ

heβ
P

X0ΔJX0 sX0 iΓ
; ð3Þ

where β ¼ 1=T. When Γ is a pure state Γα for HJ, the
locally transformed state is a pure state Γ0

α forHJþΔJ, so we
can use the same labels α.
More generally, states Γ and Γ0 are related as in Eq. (3)

and are Gibbs states for HJ and HJþΔJ, respectively, if and
only if they are mixtures of pure states Γα, Γ0

α for the
respective Hamiltonians with respective weights wα, w0

α

related by [20,33]

w0
α ¼

rαwαP
γrγwγ

; ð4Þ

where

rα ¼ heβ
P

X
ΔJXsXiα: ð5Þ

Our main objects of interest are invariant observable
properties of pure states. We define an invariant observable
OðJ;ΓαÞ to be a (Borel-measurable) function of ðJ;ΓαÞ that
is invariant under both translations and local transforma-
tions. When spin-flip symmetry is present, we consider
local changes in JX only for jXj even, and we can consider
observables that are also invariant under a spin-flip trans-
formation of Γα.
Examples include translation averages of spin expect-

ations. We define the translation of a site x by a vector x0 to
be τx0x ¼ xþ x0; for a set X ¼ fxi∶ i ¼ 1;…; pg of sites,
τx0X is defined in the obvious way. Also, for W a positive
odd integer, we define ΛW ⊂ Zd to be a hypercube of side
W − 1, centered on the origin, so that jΛW j ¼ Wd sites. For
a function fX, its translation average AvfX is

Av fX ¼ lim
W→∞

1

Wd

X
x0∈ΛW

fτx0X; ð6Þ

provided the limit exists.
Postponing the latter issue for a moment, some examples

of invariant observables for a Γα are as follows: (i) The
magnetization per site, Avhsxiα (here X ¼ fxg and
fX ¼ hsxiα), and generalizations to all sX in place of a
single spin sx. (ii) The EA single-site quadratic self-overlap
Avhsxi2α, the two-site or edge self-overlaps Avhsxsyi2α (for
which X ¼ fx; yg), and their generalizations to all sX.
(iii) More general forms, involving the overlaps of all
degrees [of which (i) and (ii) are special cases],
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Av
Yn
i¼1

hsXi
iα; ð7Þ

where Xi, i ¼ 1, …, n are finite sets, X ¼∪i Xi, and the
translation average is over simultaneous translations of all
Xi. Spin-flip invariant examples include all those in (ii), and
those in Eq. (7) if

P
i jXij is even.

Other examples are (iv) parts of the internal energy
density, with fX ¼ −JXhsXiα for each X, and the internal
energy density itself; and (v) the free energy density, and
hence, using (iv), the entropy density also. All examples in
(iv) and (v) are spin-flip invariant whenever HJ is.
To make further progress, we introduce metastates. A

metastate κJðΓÞ is a probability distribution on states Γ for
given J, such that a state drawn from it is a Gibbs state for J,
with νκJ probability 1 [i.e., νκJ–almost every ðJ;ΓÞ]; we
write EκJ � � � for the expectation under κJ. Metastates were
originally constructed to describe asymptotically large,
finite-size systems in equilibrium [20–23]. They are par-
ticularly useful for systems with chaotic size dependence
[34], which may prevent directly taking the thermodynamic
limit with bond-independent boundary conditions (BCs).
Metastates using periodic BCs in the finite-size systems are
covariant under both translations and local transformations
[20–23]. Covariance states that, if θ denotes either a
translation or a local change of J, and also the correspond-
ing transformation of a state Γ, then κθJðΓÞ ¼ κJðθ−1ΓÞ.
That is, under a transformation of J of either type, the
weight in κJ flows to corresponding transformed Gibbs
states. These properties are crucial in what follows.
For HJ with spin-flip symmetry, we require a meta-

state such that any Gibbs state drawn from it is spin-flip
invariant. This is automatic when a spin-flip-invariant BC
(e.g., periodic) is used in the construction.
To show invariance for an observable in cases (i)–

(iv) above, we use translation invariance of ν, translation
covariance of κJ, and also translation covariance of wΓðαÞ
under translations of ðJ;ΓÞ, which follows from the trans-
lation property of Γ. Together these imply that the prob-
ability distribution νðJÞκJðΓÞwΓðαÞ on J, Γ, and Γα is
translation invariant. For any function fX of J, Γα for given
ðJ;ΓÞ such that EEκJ

R
dwΓðαÞjfXj < ∞, it follows

directly from the ergodic theorem for translations [31] that
AvfX exists and is translation invariant, for νκJwΓ–almost
every ðJ;Γ;ΓαÞ. Invariance under local transformations
then also holds, because the translation average involves
a sum over x0 ∈ ΛW, and by the clustering property of pure
states, the change in each thermal average is arbitrarily
small except for a fraction of x0 values that tends to zero
as W → ∞. We discuss the free energy density after
Theorem 1.
We can now formulate a full statement of our result:
Theorem 1.—Consider a short-range n.i.p. mixed p-spin

model with VarJX > 0 for all X ∈ X , and an invariant
observable property OðJ;ΓαÞ, where the pure state Γα

appears in the decomposition [Eq. (2)] of a Gibbs state

Γ drawn from a metastate κJ, with J drawn from ν. Then,
for ν–almost every J and κJ–almost every Γ, OðJ;ΓαÞ ¼
OðJ;Γα0 Þ for wΓ × wΓ–almost every pair of pure states α, α0
in the decomposition of Γ. In the spin-flip-invariant case,
the conditions are the same except that VarJX > 0 for all
X ∈ X with jXj even; then the statement holds for invariant
observables O that are spin-flip invariant.
Remarks.—(a) We emphasize that the result does not say

that the invariant observable takes the same value in pure
states in the decomposition of different Gibbs states. (If for
two Gibbs states there is a set of pure states having nonzero
weight in both, then all the pure states in both decom-
positions must have the same value of the observable.)
(b) The conventional picture of a first-order phase

transition (FOT) is that at a FOT point, two or more pure
states occur and differ in the values of some O’s. By
Theorem 1, if two or more such pure states occurred (for
flip-invariant O, if there is spin-flip symmetry), each with
nonzero νκJwΓ probability, then κJ would be nontrivial
(ν–almost surely), with the different values ofO segregated
into distinct Gibbs states in the support of κJ. The way this
arises in the cases of O’s as in example case (i), or the
energy or entropy densities, is that at the FOT point, for
each finite size, one or the other of the two states is favored
by sample-to-sample fluctuations of disorder that couple to
O locally, so in the limit, the κJ probability of a mixture of
the two is 0. One example is the random-field Ising
ferromagnet, in which there is no spin-flip symmetry,
and for d > 2 at low T, there are two pure states with
opposite magnetization [35], while κJ is nontrivial [20,36];
others are FOTs with nonzero latent heat [37], in which the
local transition temperature fluctuates [38], though in those
it is less clear whether both the high- and low-temperature
states are present in κJ at the FOT.
(c) We define the free energy density of a Gibbs state Γ as

limW→∞ FW=Wd (if it exists), where eβFWþWd ln 2 ¼ heβHW iΓ
and HW ¼ −

P
X∶X∩ΛW≠0 JXsX [20]. The existence of the

limit for short-range HJ can be proved in a similar way to
that of the usual thermodynamic limit [39–44]; the invari-
ance properties then follow easily. The proof shows directly
that the free energy density is ν–almost surely a constant,
independent of both J and Γ, for any Gibbs (not just any
pure) state Γ, so for this observable our result is not needed.
This approach extends to the magnetization and entropy
densities by taking derivatives after the W → ∞ limit, but
the derivatives may be undefined at a FOT point, unlike in
our approach above.
(d) Theorem 1, together with the L1 ergodic theorem

[45], further implies such results as that, for each X,

lim
W→∞

EEκJ

Z
dwΓðαÞ

���� 1

Wd

X
x0∈ΛW

ðJτx0Xhsτx0Xiα

−Jτx0Xhsτx0XiΓÞ
���� ¼ 0; ð8Þ
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even at an FOT point; these yield stronger statements of
important identities [1,2] for short-range SGs.
(e) Equality of self-overlaps in the pure states in a Gibbs

state is frequently used as a hypothesis—for example, in
Refs. [46,47]—and that is now justified by Theorem 1. An
extension of the result, under appropriate conditions, that
gave equality of self-overlaps for all pure states in all Gibbs
states in the metastate would agree with RSB [9].
(f) For technical reasons, the proof of Theorem 1

assumes that ν is n.i.p. with VarJX > 0 for all X ∈ X
(or all even X), which excludes the EA model. Note,
however, that VarJX, while required to be nonzero for all X
(or all even X), could be taken to be arbitrarily small for all
but nearest-neighbor pairs (in this example), and rapidly
decaying in X. One would expect the effect of adding a very
small perturbation (not changing the symmetry) to the EA
model to have little physical effect; thus, the result may
hold more generally. Alternatively, one can argue that there
was no physical reason to assume only nearest-neighbor
interactions, as multispin interactions certainly occur
generically in nature, even if they are usually weak.
We now proceed to the proof of Theorem 1. The

translation-invariant distribution (or measure) νκJwΓ is
for triples ðJ;Γ;ΨÞ; here we use Ψ (as well as Γ) to denote
an arbitrary state, and express wΓ as wΓðΨÞ, such thatR
Ψ∈A dwΓðΨÞ ¼

R
Γα∈A dwΓðαÞ for any measurable set A. In

the space of pairs ðJ;ΨÞ consisting of a bond realization
and a state, we consider (Borel-measurable) invariant sets A
of pairs; that is, if ðJ;ΨÞ ∈ A, and θ is any translation or
local transformation, then ðθJ; θΨÞ ∈ A. These sets form a
sub–σ-algebra I1 of the σ-algebra of all Borel sets of pairs.
For a set A ∈ I1, we write AJ for the set of Ψ at the
specified J; then AJ changes covariantly under either a
translation or a local change in J. (We will later connect
these sets with the invariant observables already discussed.)
For the spin-flip-invariant case, the definition of I1 is
modified because the local transformations are restricted to
jXj even, and further we impose the condition that for sets A
in I1, if ðJ;ΨÞ ∈ A, then ðJ; Ψ̄Þ ∈ A.
The formal statement we prove is the following zero-one

law, which is equivalent to Theorem 1; after its proof we
explain why that is so.
Proposition 1 (zero-one law).—Consider a mixed p-spin

model as in the hypotheses of Theorem 1, a metastate κJ,
and sets A ∈ I1. Then, for νðJÞκJðΓÞ–almost every ðJ;ΓÞ,
the measure wΓ is trivial on the sets AJ: any such set has
wΓ-measure either 0 or 1.
Proof.—First, consider the case without spin-flip sym-

metry. The κJ-expectation of the measure wΓðAJÞ of the set
AJ for given Γ is

EκJ

Z
AJ

dwΓðΨÞ: ð9Þ

By the translation covariance of κJ, wΓ, and AJ, this
quantity is translation invariant. Hence, as the distribution

νðJÞ is translation ergodic, Eq. (9) must be constant—i.e.,
independent of J for ν–almost every J [31]. On the other
hand, for any X, under a local transformation in which only
JX changes (by ΔJX), to first order, Eq. (9) changes by

βΔJXEκJ

Z
AJ

dwΓðΨÞ½hsXiΨ − hsXiΓ�; ð10Þ

using Eq. (4) and the covariance of κJ and AJ. By the n.i.p.
property, for ν–almost every given JX, there is nonzero
marginal probability for sets of J0X ≠ JX with J0X close to
JX, so from ergodicity, Eq. (10) must be zero. Then,
applying the pure-state decomposition Γ ¼ R

dwΓðΨÞΨ,
we have

EκJ

Z
AJ

dwΓðΨÞhsXiΨ ¼ EκJ

Z
AJ

dwΓðΨÞ
Z

dwΓðΨ0ÞhsXiΨ0 :

ð11Þ

As Eq. (11) holds for all X, it follows that the states on the
two sides are equal (relabeling Ψ as Ψ0 on the left):

EκJ

Z
AJ

dwΓðΨ0ÞΨ0 ¼ EκJ

Z
AJ

dwΓðΨÞ
Z

dwΓðΨ0ÞΨ0: ð12Þ

Both sides are weighted averages of pure states using a
probability measure, so, if nonzero, they are Gibbs states up
to normalization. Now, the uniqueness of the pure-state
decomposition of any Gibbs state for a given J implies that
there is a contradiction unless the measures on Ψ0 on the
two sides are the same. In particular, as AJ is independent of
Γ, and on the left-hand side only a Ψ0 in AJ can contribute,
there is a contradiction unless on the right-hand side Ψ0
almost always lies in AJ. This implies that κJ–almost every
Gibbs state Γ that has nonzero wΓ-measure for AJ must in
fact have wΓ-measure 1 for AJ,

R
AJ
dwΓðΨÞ ¼ 1; further,

this holds for ν–almost every J. Finally, for the case with
spin-flip symmetry, the proof is identical except that jXj
is even. ▪
Thus, it is impossible to “separate” pure states into

complementary covariant sets AJ, Ac
J for A ∈ I1 that both

have nonzero wΓ measure. Theorem 1 follows, because an
invariant observable that took different values on (disjoint
Borel) sets of pure states, each with nonzero wΓ measure,
would thereby produce such a pair of sets. Conversely, for
any set A ∈ I1, there is a (Borel-measurable) function on
pairs ðJ;ΨÞ that is equal to 1 on A and zero otherwise,
and it is invariant, so that Theorem 1 implies Proposition 1.
The observables in the examples may not all be de-
fined for all Ψ, but it is sufficient that all are
well-defined for νEκJwΓ–almost every pair ðJ;ΨÞ. The
proof of the result can be easily extended to give similar
statements for more general spins and symmetries of their
Hamiltonian.
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To conclude, in a broad class of models we have
established a property, single-replica equivalence, of non-
trivial mixed Gibbs states for short-range spin systems with
disorder within any fully covariant metastate construction;
it asserts that, for any Gibbs state drawn from the metastate
for given disorder, each macroscopic observable takes the
same value in any pure state in the decomposition of that
Gibbs state. As discussed above, this considerably extends
older results [20,36,37] that constrain the possible structure
of mixed Gibbs states in such a metastate in a disordered
spin system, including at a first-order transition point. The
result for self-overlaps was used as an assumption in
rigorous proofs of other results [46,47]; it parallels a result
[27] for the SK model [10]. The case of parts of the internal
energy density leads directly to a set of identities of the
stochastic stability type [1] via methods of Ref. [2]. Such
identities, as well as those of Ref. [47], could play a key
future role in further constraining the behavior of such
systems, similar to the case of the SK model [8]. These
applications illustrate the significance of this fundamental
general principle, proved here.

We thank A. C. D. van Enter for thoughtful comments on
an earlier version. N. R. is grateful for the support of NSF
Grant No. DMR-1724923.
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