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Dirac fermion systems form a unique Landau level at the Fermi level—the so-called zero mode—whose
observation itself will provide strong evidence of the presence of Dirac dispersions. Here, we report the
study of semimetallic black phosphorus under pressure by 31P-nuclear magnetic resonance measurements
in a wide range of magnetic field up to 24.0 T. We have found a field-induced giant enhancement of
1=T1T, where 1=T1 is the nuclear spin lattice relaxation rate: 1=T1T at 24.0 T reaches more than 20 times
larger than that at 2.0 T. The increase in 1=T1T above 6.5 T is approximately proportional to the squared
field, implying a linear relationship between the density of states and the field. We also found that, while
1=T1T at a constant field is independent of temperature in the low-temperature region, it steeply increases
with temperature above 100 K. All these phenomena are well explained by considering the effect of
Landau quantization on three-dimensional Dirac fermions. The present study demonstrates that 1=T1 is an
excellent quantity to probe the zero-mode Landau level and to identify the dimensionality of the Dirac
fermion system.
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The fascinating physical properties of substances simply
made up of a single element can trigger progress of
advanced solid state physics. Graphene, in which the
existence of the massless Dirac fermions was first discov-
ered [1], is a typical example, and it opened the way to a
new research field of massless fermions incorporating
relativistic effects. Black phosphorus (BP), one of the
allotropes of phosphorus, is another single-element sub-
stance that has recently attracted much attention. BP with a
puckered graphenelike honeycomb layered structure is a
semiconductor, and this fact is in contrast to the gapless and
metallic properties of graphene and graphite, respectively.
The moderate energy gap size of BP, which can be
controlled by the number of phosphorene layers (0.3 eV
for the bulk to 2 eV for the monolayer) [2–6], and excellent
transport properties, including high carrier mobility and
strongly anisotropic conduction, promise its potential for
applications to high-performance devices (see, e.g., Ref. [7]
and references therein).
In addition, BP is one of a few candidate materials in

which the appearance of 3D Dirac dispersions is tuned by
the application of pressure [8,9]. Therefore, the issue of
interest in this study is the extension of the two-dimensional
(2D) Dirac dispersion, found in graphene, to three-
dimensional (3D) systems. BP undergoes a transition from
a normal semiconducting phase to a semimetallic phase at a
transition pressure of 1.2–1.5 GPa, as evidenced by a gap
estimation from an optical absorption measurement [10] and

the observation of Shubnikov–de Haas oscillation [11–13].
This transition is also viewed as a topological change in the
Fermi surface [11–14]. Above this critical pressure, BP is
theoretically predicted to be a 3D Dirac semimetal with
Dirac cones [8] or a node line [9,15]. Experimentally, on the
other hand, although the emergence of a nontrivial Berry
phase has been suggested as evidence for Dirac-like
dispersion by transport experiments [11,13], there are
actually a few experimental techniques to investigate the
band structure under pressure, albeit in the easy-to-reach
pressure region for BP. Thus, the presence of Dirac
dispersions in BP has not been confirmed.
Worth noting is that the Dirac fermion systems form

unique Landau levels in a magnetic field, depending on
their dimensionality: In both 2D and 3D systems, a Landau
level at the Fermi energy εF appears, which is called the
zero mode [16–18], but they show a different magnetic field
response, as described later. In this Letter, we have focused
on observing the field dependence of the density of states
(DOS) at the zero mode. The observation of the zero mode
is itself strong evidence of the existence of Dirac disper-
sions, and its magnetic field dependence provides crucial
information on dimensionality.
For nonmagnetic materials, the nuclear spin lattice

relaxation rate 1=T1 measured by the nuclear magnetic
resonance (NMR) technique reflects the DOS following
Eq. (1) [19]:
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1

T1

¼ πγ2ℏA2
hf

Z
∞

−∞
DðεÞ2fðε − μÞf1 − fðε − μÞgdε; ð1Þ

where γ is the nuclear gyromagnetic ratio, Ahf is the
hyperfine coupling constant, DðεÞ is the energy depend-
ence of the DOS, μ is the chemical potential, and fðε − μÞ
is the Fermi-Dirac distribution function. The NMR is well
known as a low-energy probe, and, therefore, when
measuring it on the Dirac fermion systems at low temper-
atures and high magnetic fields, the T1 relaxation should be
dominated by the DOS at the zero mode. To extract the
zero-mode component in the high-pressure semimetallic
phase of BP, we have carried out the T1 measurements in a
wide range of magnetic field from 2.0 to 24.0 T and a
temperature range of 4.2–300 K.
A polycrystalline sample of BP was prepared by a high-

pressure synthesis technique [20]. The high-pressure
measurements of 31P-NMR were carried out using a self-
clamped BeCu/NiCrAl piston-cylinder cell. The BP sam-
ple, an NMR coil, a manganin wire gauge, and a tin
manometer were placed inside a Teflon capsule filled with
silicon-based organic liquid as a pressure-transmitting
liquid. The pressure was loaded by monitoring the man-
ganin gauge, and the clamped pressure was determined by
measuring the superconducting transition temperature of
the tin. The estimated pressure is 1.63 GPa, just above the
semiconductor-semimetal transition pressure. 31P-NMR
spectra and T1 relaxation curves were acquired by meas-
uring the intensity of free induction decay signal using a
phase-coherent pulsed spectrometer (Thamway Co., Ltd.,
Japan). The wide range of magnetic field measurements are
realized by using 8 and 15 T superconducting magnets
(SMs) at University of Hyogo (2.0 < B < 13.0 T) and a
25 T cryogen-free SM (25T-CSM) (13.0 < B < 24.0 T) at
Tohoku University. For details on the stability of these
SMs to measure the long T1 of BP, see Supplemental
Material [21].
Figure 1 shows the representative comparison of T1

relaxation curves measured at different applied fields. The
value of T1 is determined by fitting the relaxation curves to
a single exponential function expected for 31P with a
nuclear spin I ¼ 1=2. Note that, over the entire temperature
and field range, the T1 recovery curves consist of a single
component within experimental accuracy (in addition to
Fig. 1, see Fig. S3 in Supplemental Material [21]). We
found that T1 at 13.0 T is approximately one-third of that at
6.5 T (see Fig. 1), and the obvious difference in the slope of
the two curves indicates the unambiguous effect of field on
T1. More detailed field dependence over a wide range of
fields from 2.0 to 24.0 T and at a fixed temperature of 4.2 K
is shown in Fig. 2. 1=T1T reveals a noticeable increase
with increasing field, in particular, above 10.0 T: The
increase at 24.0 T reaches more than 20 times compared to
the lowest field (2.0 T). Field-induced variations in T1 are
seen in magnetic materials, because spin fluctuations are

suppressed by the strong magnetic field. The effects of
strong field are also expected in low carrier density systems
and narrow-gap semiconductors: When applying strong
fields beyond the quantum limit, all electrons occupying
the lowest Landau level are fully spin polarized and the
electron spin can no longer flip [23]. In both cases, 1=T1T
is reduced by the magnetic field; therefore, the observed
anomalous increase in 1=T1T with field is unprecedented
for conventional materials as far as the authors know.
In the following analyses, we incorporate the Landau

quantization within 2D and 3D Dirac fermion models,

FIG. 1. T1 recovery curves measured at 4.2 K and different
external fields of 6.5 and 13.0 T. ½Mð∞Þ −MðtÞ�=Mð∞Þ is
plotted as a function of t, where t is a delay time after the
saturation pulses and MðtÞ is the nuclear magnetization at t. The
dotted lines are fits to a single exponential function exp ð−t=T1Þ.

FIG. 2. Field dependence of 1=T1T (open circles) measured at
4.2 K. The red dotted line shows the field dependence expected
for the 2D Dirac fermion system, where we assumed the model
illustrated in the inset in Fig. 3. The blue solid line represents the
least-squares fit of the B2 function to the data above 6.5 T, where
the B2 law is the field dependence expected for the 3D Dirac
fermion system. See the text for details.
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which is essential to the effects of field on the DOS in the
Dirac fermion systems at low temperatures. When a
magnetic field B is applied to a 2D Dirac fermion system,
the DOS separates into energy-discrete levels with the
Landau level index n, and a zero-mode (n ¼ 0) DOS
appears at the energy of the Dirac point, εD [17]. As the
magnitude of the zero-mode DOS increases in proportion
to B, 1=T1T will follow an approximately B2 increase using
Eq. (1). However, at the same time, one needs to consider
the spin splitting of the zero mode due to the Zeeman effect,
as shown in the inset in Fig. 3. Then, the magnitude of the
DOS at ε ¼ εD will undergo a maximum as the field
increases, followed by a monotonic decrease. Indeed, the
quasi-2D Dirac material α-ðBEDT-TTFÞ2I3 exhibits the
maximum in the electronic specific heat coefficient, as
evidenced by a specific heat measurement [24].
Although the magnetic field for the maximum may

depend on the species of 2D Dirac material, it is, in
principle, determined by the combination of the following
two factors: the field dependence of the magnitude of the
zero-mode DOS and its spin splitting. For the rough
estimation of the field for the maximum, we assume a
Gaussian-shaped zero-mode DOS with a width thermally
broadened as kBT and its spin splitting of gμBB, where kB is
the Boltzmann constant, g ≈ 2 [25] is the Landé g factor,
and μB is the Bohr magneton. The calculation of the field
dependence of 1=T1T at T ¼ 4.2 K gives a maximum
around 8 T, as indicated by the red dotted line in Fig. 2. The
maximum field of this experiment—24.0 T—would be
large enough to observe a downward deviation from the B2

dependence; however, there is no sign of that happening at
all in the present data. Thus, the 2D Dirac fermion model is
incompatible with the present results.

In contrast, different field dependence of 1=T1T is
expected for the 3D Dirac fermion systems. The effect
of the Landau quantization on a simple 3D Dirac fermion
system leads to the following energy dependence of the
DOS [27,28]:

D0ðEÞ ¼
eB

4π2ℏcvF

 
1þ 2

XbE2=2v2FeℏBc

n¼1

jEjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 2v2FeℏnB

p
!
;

ð2Þ

where c is a velocity of light, bxc is the integer part of x, vF
is the Fermi velocity, and E ¼ ε − εD. If the Zeeman
splitting of the Landau quantization is also taken into
account, D0ðEÞ in Eq. (2) is modified into DðEÞ in
Ref. [26]. DðEÞ acquires a sawtooth form with divergences
at En � gμBB=2, where n ¼ �1;�2;�3… and

EnðBÞ ¼
(
−vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏjnjBp ðn < 0Þ

vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏjnjBp ðn > 0Þ;

ð3Þ

and an energy-independent zero mode (n ¼ 0) that appears
between the divergences for n ¼ �1, as illustrated in Fig. 3.
For n ¼ 0, the magnitude of the zero-mode DOS is in
proportion to B, as Eq. (4) indicates:

DðEÞ ¼ eB
2π2ℏcvF

ðn ¼ 0Þ: ð4Þ

Unlike the zero-mode DOS in the 2D system, the spin
splitting effect is effectively negligible because of the
energy-independent shape of the DOS around E ¼ 0.
Therefore, if B is large enough—namely, E1 is much
larger than the thermal excitation energy—B2 dependence
is expected in 1=T1T according to Eq. (1). As indicated by
the blue solid line in Fig. 2, the result above 6.5 T is much
more in accordance with this 3D model than with the
2D model.
Below 6.5 T, 1=T1T exhibits remarkable deviation from

B2 dependence, and we here briefly comment on this
feature. As the field decreases, En≥1 approaches E ¼ 0, and
the enhanced DOS at En≥1 begins to contribute to the T1

relaxation. Since this additional effect will weaken the field
dependence of 1=T1T (∝ B2) originating from the zero
mode, the much less field dependence observed below 6 T
may result from such a scheme. However, quantitative
simulations in the low-field region are difficult, for exam-
ple, because the features of the original band structure at
zero field remain strong and/or quantum oscillations may
appear as observed in the magnetoresistance [11–13].
The validity of the 3D model can also be examined from

the temperature dependence of 1=T1T measured at different
magnetic fields. Figure 4 shows the comparison of 1=T1T
measured at 6.5 and 13.0 T. Above 100 K, the two series of

FIG. 3. Energy dependence of the DOS of the 3D Dirac fermion
system, which is calculated based on Ref. [26] and Eq. (2)
assuming B ¼ 13.0 T and vF ¼ 1 × 105 m=s. Inset: the zero-
mode DOS of the 2D Dirac fermion system. For the Zeeman
splitting, we assume B ¼ 13.0 T. The solid and dashed lines are
the DOS for up and down spins, respectively.
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data coincide, suggesting that thermal fluctuations surpass
the field effect on 1=T1T observed at low temperatures
(see Fig. 2). The temperature dependence above 100 K is
well reproduced by the calculation of Eq. (1) as indicated
by the dotted line, where we used the DOS [see Fig. 4(b)]
obtained from the local density approximation (LDA)
calculation plus the modified Becke-Johnson exchange
potential [see Fig. 4(a)]. Here, we adopted the recently
reported crystallographic parameters at 1.55 GPa [29,30].
As shown in Fig. 4(a), the present LDA calculation, as well
as the previous reports [8,9], predicts the existence of 3D
Dirac dispersions around the Z point of the Brillouin zone.
This prediction is well supported by the above-mentioned
consistency between the experiment and the calculation of
1=T1T above 100 K in the semimetallic state, together
with similar consistency in the semiconducting state
below 1 GPa [31].
As the temperature decreases below 200 K, the temper-

ature gradient of 1=T1T gradually decreases at both 6.5 and
13.0 T, followed by constant behavior against the temper-
ature. Such temperature-independent behavior is also
derived from the simulation using Eq. (1) based on the
LDA calculation, as the dotted line shows in Fig. 4(c). In
this case, it is interpreted that the temperature dependence

is mainly attributed to the tiny DOS at εF, as indicated in
the inset in Fig. 4(b), where the DOS near εF is expanded.
However, in this temperature region below about 100 K, the
effect of magnetic field on 1=T1T becomes distinct: 1=T1T
at 13.0 T is enhanced compared to that at 6.5 T. Moreover,
the temperature below which 1=T1T is temperature inde-
pendent, defined as T�ðBÞ, depends strongly on B, i.e.,
T�ð13.0TÞ ¼ 75� 5 K and T�ð6.5TÞ ¼ 30� 5 K as indi-
cated by the arrows in Fig. 4(c). These cannot be explained
by the present LDA calculation, because the effect of field
is not taken into account in it.
Therefore, we again consider the effect of the Landau

quantization to understand these phenomena driven by
field. Based on the Landau level scheme for the 3D Dirac
fermion system, the flat zero-mode DOS (see Fig. 3) will
induce 1=T1T ¼ const behavior in the low-temperature
region, and the field dependence of 1=T1T is accounted for
in the regime of Eq. (4) as described above. In order to
explain the upward deviation of 1=T1T from the constant
above T� and the field-dependent T�ðBÞ, the contribution
of the highly enhanced DOS at EnðBÞ with n ¼ 1 or −1 is
essential, where n ¼ 1 if μ > εD and n ¼ −1 if μ < εD. We
also take into account the field dependence of μ as follows:
From the inversely proportional relationship between n and
the magnetic field at which the Shubnikov–de Haas
oscillation in the longitudinal resistance exhibits a dip,
we obtain Bjnj ≈ 4.5 T [12]. Here, the Landau level
index for n < 0 is also included. Then we assume
μð4.5TÞ¼Eαð4.5 TÞ, where α ¼ 1 if μ > εD and α ¼ −1
if μ < εD. For B > 4.5 T, since E−1 < μðBÞ < E1

and DðEÞ∝B [see Eq. (3)], μðBÞ is given as
μðBÞ ¼ Eαð4.5 TÞ × ð4.5=BÞ. Moreover, the assump-
tion that T�ðBÞ ∝ jEαðBÞ − μðBÞj and the relationship
that E�1ðBÞ ¼ E�1ð4.5Þ ×

ffiffiffiffiffiffiffiffiffiffiffiffi
B=4.5

p
from Eq. (3) yield

T�ð13.0 TÞ=T�ð6.5 TÞ ∼ 2.66, where Zeeman splitting is
also considered. This estimation is in excellent agreement
with the experimental result of 2.7� 0.5, which provides
a plausible explanation of the peculiar field dependence of
T�, although whether μ is greater or less than εD, and,
hence, the sign of α, cannot be determined only by
this study.
Thus, the present study successfully detects the zero-

mode DOS, which provides direct evidence that BP is a 3D
Dirac semimetal. However, looking at the details of the
field dependence of 1=T1T shown in Fig. 2, the exper-
imentally obtained field dependence above 10 T seems
slightly steeper than the B2 law indicated by the present
model. This small discrepancy may be because our model
does not reflect the real band structure of BP. For example,
the existence of a node line rather than simple Dirac points
is theoretically predicted near EF [9,13]. Moreover, since a
polycrystalline sample was used in this study, it is possible
that the value of 1=T1T, which can depend on the direction
of the applied field reflecting anisotropy in the k space,
is rounded in some way. It is, therefore, expected that

FIG. 4. (a) Band structure near εF calculated by the LDA with
structural parameters at 1.55 GPa [29,30]. (b) Energy dependence
of the total DOS based on the result shown in (a). The inset shows
an expanded view near εF. (c) Temperature dependence of 1=T1T
at 6.5 (open circles) and 13.0 T (solid triangles) and at 1.63 GPa.
The dotted line is the result of computing Eq. (1) using the DOS
shown in (b). The arrows denote T� at 6.5 and 13.0 T. Error bars
sufficiently smaller than the size of symbols are not shown.
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measurements using a single crystalline sample will allow
us to identify the effect of the Landau quantization on a
more realistic band structure. Such measurements are
currently in progress, and it has revealed that the anisotropy
of T1 is small at ambient pressure [32].
In summary, we observed an enormous field-induced

increase of 1=T1T at 1.63 GPa, just above the semi-
conductor-semimetal transition pressure of BP: 1=T1T
above 6.5 T increases with the approximately B2 law,
implying that the DOS changes in proportion to B, and its
value at 24.0 T reaches 20 times larger than that at 2.0 T.
1=T1T measured at a constant field shows temperature-
independent behavior in the low-temperature region,
whereas it steeply increases with increasing temperature
above T� that strongly depends on the field. All these
phenomena are well explained by considering the Landau
quantization effect within a 3D Dirac fermion model. The
present study shows that the observation of the zero-mode
Landau level by the 1=T1 measurement, capable of high-
pressure measurements as well, is highly useful for
identifying the Dirac dispersion.
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