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The ν ¼ 2=3 fractional quantum Hall state is the hole-conjugate state to the primary Laughlin
ν ¼ 1=3 state. We investigate transmission of edge states through quantum point contacts fabricated
on a GaAs/AlGaAs heterostructure designed to have a sharp confining potential. When a small but finite
bias is applied, we observe an intermediate conductance plateau with G ¼ 0.5ðe2=hÞ. This plateau is
observed in multiple QPCs, and persists over a significant range of magnetic field, gate voltage, and source-
drain bias, making it a robust feature. Using a simple model that considers scattering and equilibration
between counterflowing charged edge modes, we find this half-integer quantized plateau to be consistent
with full reflection of an inner counterpropagating −1=3 edge mode while the outer integer mode is fully
transmitted. In a QPC fabricated on a different heterostructure which has a softer confining potential, we
instead observe an intermediate conductance plateau atG ¼ ð1=3Þðe2=hÞ. These results provide support for
a model at ν ¼ 2=3 in which the edge transitions from a structure having an inner upstream −1=3 charge
mode and outer downstream integer mode to a structure with two downstream 1=3 charge modes when the
confining potential is tuned from sharp to soft and disorder prevails.
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The quantum Hall effect occurs when a two-dimensional
electron gas (2DEG) is cooled to low temperature and
placed in a strong magnetic field. Fractional quantum Hall
states [1,2] exhibit fractionally quantized Hall conductance,
and have excitations that behave as fractionally charged
quasiparticles which obey anyonic braiding statistics [3–8].
The concept of particle-hole symmetry plays a central

role in the hierarchical construction of daughter states from
the ν ¼ 1=m Laughlin series [5,9,10]. If Landau-level
mixing is neglected, particle-hole symmetry is expected
for each Landau level [10]; a similar approximate particle-
hole symmetry exists for composite fermions [11]. The
ν ¼ 2=3 fractional quantum Hall state can be considered to
be the hole-conjugate state to the ν ¼ 1=3 state [10,11]. In
this picture, the fully filled ν ¼ 1 state is considered to be
the vacuum, and holes form a ν ¼ 1=3 state on top of this
vacuum, leading to an overall 2=3 filling factor. The 2=3
state has been investigated in numerous theoretical works
[12–14].
The edge mode structure in hierarchical states may

possess several branches [12,15]. Moreover, multiple edge
structures have been proposed for the 2=3 state. The edge
structure which most straightforwardly follows from the
hole-conjugate nature of the state was proposed by
MacDonald [12,16]. In this picture, the edge consists of
an outer downstream integer edge mode (from the

underlying ν ¼ 1 state) and an inner, counterpropogating
−1=3 edge mode. In this context, counterpropagating (or
upstream) edge modes travel in the direction opposite to the
conventional quantumHall chiral edge current (edge modes
following the conventional direction may be referred to as
downstream). Equilibration between the two edge modes
leads to a total conductance of ð2=3Þðe2=hÞ. A different
edge structure was proposed by Kane and collaborators
[17] in which disorder dominates and drives an edge phase
transition to a single downstream charge mode with
conductance ð2=3Þðe2=hÞ and a counterpropagating neutral
mode. A model developed by Meir and co-workers
considered the impact of soft confining potential in addition
to disorder and predicted a reconstructed edge involving the
formation of a strip with filling factor ν ¼ 1=3 at the edge
leading to two downstream charge modes with conductance
ð1=3Þðe2=hÞ along with counterpropagating neutral modes
[18,19]. Other theoretical works have also examined the
possibility of incompressible strips with fractional fillings
when the confining potential is soft [20–22], including
recent works investigating ν ¼ 1 [23] and ν ¼ 1=3 [24].
Experimental studies of the ν ¼ 2=3 state in quantum point
contacts have usually shown an intermediate conductance
plateau with G ¼ ð1=3Þðe2=hÞ when the QPC gates are
negatively biased to bring the edges close together, which
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supports the existence of the Meir edge structure in those
experiments [25–27]. Experiments in which this G ¼
ð1=3Þðe2=hÞ intermediate plateau was observed also
detected upstream noise attributed to counterpropagating
neutral modes [27,28]. These neutral modes are likely to be
detrimental to interference experiments because their
entanglement with the charge modes leads to dephasing
[29,30].
The device investigated in our experiments consists of

two quantum point contacts (QPCs) separated by a pair of
side gates, and utilizes a GaAs/AlGaAs heterostructure
with auxiliary screening wells above and below the main
quantum well (shown in Supplemental Material Fig. 1 and

described in Sec. 1 of [31]). This geometry can be used to
define a Fabry-Perot interferometer [8,32–37], but in this
Letter we probe the QPCs independently without inducing
interference. A false color SEM image is shown in
Fig. 1(a). Each QPC has a separation of 300 nm. We
probe the QPCs individually, measuring the conductance of
one QPC while tuning the gate voltage on the other to full
transmission. We apply a voltage VSD on the source contact
and measure current at the drain. The voltage drop across
the device is measured, as illustrated in Fig. 1, and the
conductance as G ¼ ðI=VÞ is calculated. The semiconduc-
tor heterostructure employed here has been designed to
produce sharp confining potentials consistent with our
recent interferometry experiments [8,36,37].
In Fig. 2(a) we show conductance versus gate voltage at

the ν ¼ 1 integer quantum Hall state. The QPCs exhibit a
single wide plateau (corresponding to full transmission of
the ν ¼ 1 edge state) and a very abrupt drop in conductance
when the edge state is pinched off in the QPC. This abrupt
pinch-off suggests that the confining potential is sharp, as
expected for devices utilizing the screening well structure
[38], since minimal backscattering occurs until the edges
are brought very close together. This behavior contrasts
with the behavior generally observed in QPCs on standard
GaAs heterostructures without screening wells at ν ¼ 1,
which often show gradual decreases in conductance,

FIG. 1. False-color SEM image of device with two QPCs.
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FIG. 2. (a) QPC Sweeps at ν ¼ 1. QPC 2 is shifted by 0.5 V for clarity. (b) Bulk transport Rxy and RD measured across the device. For
the RD measurement, both QPCs and the side gates are set to −0.3 V so that the 2DEG under the gates is depleted, but minimal
backscattering occurs in the QPCs. (c) QPC sweeps at ν ¼ 2=3 with DC source-drain bias of 0 V (dashed lines) and 50 μV (solid lines).
With 50 μV bias, an intermediate plateau at 0.5 e2=h appears in both QPCs. (d) Differential conductance for QPC 1 as a function of
QPC gate voltage and source-drain bias VSD. White dashed lines indicate the regions where G ≈ 0.5ðe2=hÞ. (e) Differential conductance
for QPC 1 versus magnetic field and QPC voltage with VSD ¼ 50 μV. (f) Line cuts of conductance versus QPC voltage at different
magnetic fields.
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resonances, and sometimes intermediate fractionally quan-
tized plateaus due to edge reconstruction [26,30].
Next we operate the device at bulk filling factor ν ¼ 2=3.

Figure 2(b) shows the bulk Hall resistance Rxy and the
diagonal resistance RD measured across the device with the
2DEG under the gates depleted, but with small enough
voltages on the gates that minimal backscattering occurs in
the QPCs, VQPC 1 ¼ VQPC 2 ¼ −0.3 V. A wide plateau is
visible in Rxy with resistance ð3=2Þðh=e2Þ ≈ 38.7 kΩ,
corresponding to the ν ¼ 2=3 state, and RD exhibits a
nearly quantized plateau over a somewhat narrower region.
Figure 2(c) shows conductance versus gate voltage for both
QPCs at B ¼ 5.9 T, near the center of the plateau. Between
0 and −2 V both QPCs show conductance close to
ð2=3Þðe2=hÞ, indicating close to full transmission of all
edge states. When there is zero applied dc bias (dashed
lines), the QPCs exhibit exhibit a somewhat less sharp
pinch-off than at ν ¼ 1, but unlike the experiments in
Refs. [25,27], there is no intermediate quantized conduct-
ance plateau at G ¼ ð1=3Þðe2=hÞ. The behavior changes
when a finite source-drain bias of 50 μV is applied, shown
in the solid lines; in this situation the applied source-drain
bias is a combination of a 10 μV ac bias which is used to
probe the differential conductance and the 50 μV dc bias.
With the finite bias both QPCs exhibit an intermediate
conductance plateau; however, the value of the interme-
diate conductance plateaus is 0.5ðe2=hÞ rather than the
ð1=3Þðe2=hÞ seen in previous experiments [25,27] (the
quantization is not exact, but the conductance is within 2%
of 0.5 ðe2=hÞ for both QPCs). This observation suggests
that a different edge structure may be present in our system,
although it is not obvious why the intermediate plateau only
occurs when finite bias is applied. Intermediate conduct-
ance plateaus are generally interpreted as occurring when
one or more inner edge states are fully reflected while the
outer edge states are fully transmitted, leading to some
range of gate voltage before the next outer edge state starts
to be backscattered when there is an incompressible region
in the middle of the QPC and the conductance is constant.
In Fig. 2(d) we plot the differential conductance for QPC

1 as a function of VSD and QPC voltage; dashed lines
indicate regions where G ≈ 0.5ðe2=hÞ. The 0.5 ðe2=hÞ
plateau develops as finite bias is applied, and the effect
is nearly symmetric around zero bias. The value of the
intermediate plateau does not change significantly when
VSD is increased past ≈25 μV. The intermediate plateau
persists over a significant range of magnetic field as seen
in Figs. 2(e) and 2(f). We have also observed this G ¼
0.5ðe2=hÞ conductance plateau in another set of QPCs on a
different chip fabricated on the same wafer (Supplemental
Material, Fig. 3 [31]).
The 0.5 ðe2=hÞ conductance plateau is not straightfor-

ward to interpret, since no proposed edge structure contains
an outer edge state with Δν ¼ 0.5 which would carry

0.5 ðe2=hÞ on its own (unlike the ν ¼ 5=2 fractional state,
ν ¼ 1=2 is expected to be a compressible sea of composite
fermions that does not form a quantum Hall state [39]).
However, a possible explanation for the 0.5 ðe2=hÞ plateau
could come from the counterpropagating charge mode as
proposed in the Macdonald edge structure [12,16].
Following the model of the ν ¼ 2=3 state as a 1=3 state
of holes on top of a vacuum of a fully filled ν ¼ 1 state, the
filling factor must increase from ν ¼ 2=3 in the bulk to
ν ¼ 1 at the edge before decreasing to zero. The reentrant
density profile is enabled by the combination of the
confining potential with the electrostatic interaction
between electrons in the vacuum ν ¼ 1 state and holes
that form the inner −1=3 state [12,16,18]. This results in an
inner counterpropagating edge state and outer downstream
edge state. In this case, the inner upstream edge state and
outer downstream edge state on one edge of a Hall bar can
have different chemical potentials because they are emitted
from different Ohmic contacts. The situation is shown
schematically in Fig. 3(a). Assuming the edge modes have
a small enough separation to allow charge transfer between
them, the counterflowing edge modes will equilibrate
[40–42] and reach the same chemical potential. Based
on the well-established experimental properties of quantum
Hall states in bulk samples, the equilibrium chemical
potential of each edge should be the potential of the con-
tact from which the downstream, higher-conductance edge
state emanated from. This leads to a potential difference
VHall ¼ ððμS − μDÞ=eÞ, and a two-terminal conductance

0 2 4 6 8 10

�
).u.a(�

x (�m)

 �
 �

0 = 1 �m
G1 = 1/3
G2 = 1

0 2 4 6 8 10

�
). u.a ( 

x (�m)

 �

 �

0 = 1 �m
G1 = 1/3
G2 = 1

(b)b)

(d)
(c)

(a)

FIG. 3. (a) Schematic of edge states in a Hall bar in the
Macdonald picture, with a counterpropogating inner −1=3 edge
state (red arrows) and outer integer edge state (black arrows).
Dashed white lines indicate equilibration near the Ohmic con-
tacts. (b) Qualitative plot of the chemical potential for the inner
mode (red) and outer mode (blue) on the bottom edge of the Hall
bar. (c) Schematic of a QPC which fully transmits the outer edge
state and fully reflects the inner one. There will be additional
equilibration in the vicinity of the QPC. (d) Chemical potential
versus position for the Hall bar with QPC and full reflection of the
inner mode.
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G ¼ ð2=3Þðe2=hÞ, consistent with the observed bulk con-
ductance properties of the 2=3 state. A quantum point
contact which causes backscattering will take the edge
states out of equilibrium and reduce the conductance of the
device. In Supplemental Material, Sec. III [31] we analyze
the situation of a bulk Hall bar and of a QPC when a
counterpropagating edge mode is present using a simple
model which includes incoherent interedge scattering along
the edge of the Hall bar (similar models were discussed in
previous works [40,43]. For a Hall bar, there will be
equilibration near each Ohmic contact [shown with dashed
line in Fig. 3(a)] so that the counterpropagating edge modes
come to the same chemical potential; μ versus position is
plotted qualitatively in Fig. 3(b). For a QPC which fully
reflects the inner mode and transmits the outer mode
[Figs. 3(c) and 3(d)], there will be additional equilibration
at the QPC, and the conductance will be reduced to
G ¼ 1

2
ðe2=hÞ, matching the value of the intermediate

plateau in Fig. 2(c).
An assumption for applying this model to our device is

that the equilibration length l0 is much smaller than the
length from the QPC to the source and drain Ohmic
contacts. In our devices, this length is very long at
≈500 μm, making full equilibration likely. Equilibration
at ν ¼ 2=3 has been studied previously in GaAs [43,44]
and graphene [45].
The requirement of finite bias to observe the G ¼

0.5ðe2=hÞ plateau suggest that at zero bias, there is a wide
range of gate voltage over which the outer mode is partially
backscattered, so that there is no region where the outer
mode is fully transmitted while the inner is fully reflected.
Finite bias tends to reduce backscattering in Luttinger
liquids [32], so the emergence of the quantized intermediate
plateau at VSD ¼ 50 μV may be due to the suppression of
backscattering for the outer mode in this regime. Full
reflection of the inner mode would be achieved by moving
the edges together via more negative gate voltage until the
outer strips of ν ¼ 1 fluid merge in the middle of the QPC
so that the interface between ν ¼ 1 and ν ¼ 2=3 is absent
inside the QPC; thus the inner mode cannot propagate
through. The lack of a fully quantized plateau at zero bias
might indicate that the electrostatics in the QPC do not
enable a region reaching full ν ¼ 1 filling inside the QPC
region once the inner mode is fully reflected, but rather the
filling is somewhat lower, resulting in a small amount of
simultaneous backscattering of the outer mode and G <
0.5ðe2=hÞ as observed in Fig. 2(c) after the initial sharp
drop in conductance. Disorder-mediated tunneling may
also be a contributing factor [26]. A prediction of Luttinger
liquid theory is that when VSD is increased, transmission of
the edge state through a barrier will increase until it reaches
full transmission, which agrees well with our observation
that after a small VSD is applied the conductance increases
to the half-integer quantized value indicating full trans-
mission of the outer edge state, and then remains nearly

constant [46]. Although integer quantum Hall edge states
are generally expected to exhibit Fermi liquid rather than
Luttinger liquid behavior based on theory [46], when an
integer edge state lies parallel to a copropagating or
counterpropagating edge state this may induce Luttinger
liquid behavior [47,48]. Additionally, nonlinear conduct-
ance suggestive of Luttinger liquid behavior has been
observed for the ν ¼ 1 integer quantum Hall state in
QPCs [49], suggesting that in real systems even isolated
integer edge states may have an interaction parameter that
is not exactly 1 and may thus diverge from ideal Fermi
liquid behavior.
To our knowledge half integer quantized conductance in

a QPC at ν ¼ 2=3 has not previously been reported. On the
other hand, in a few experiments a conductance plateau
withG ¼ 1.5ðe2=hÞ has been observed in QPCs at ν ¼ 5=3
[50–52], which is the equivalent of the ν ¼ 2=3 state with
opposite spin. We also observe an intermediate plateau at
G ¼ 1.5ðe2=hÞ at ν ¼ 5=3 in both QPCs in our device
[Supplemental Material Fig. 4(a) and Sec. IV [31], which
includes Ref. [53] ], which suggests that an edge structure
occurs at ν ¼ 5=3 similar to the one at ν ¼ 2=3 in our
device. On the other hand, at the particlelike fractional
quantum Hall states ν ¼ 4=3 and ν ¼ 2=5, we do not
observe anomalous intermediate plateaus that would imply
a reentrant density profile, which is consistent with the
expectation that the ν ¼ 1 strip and reentrant density profile
occur only for holelike fractional quantum Hall states. This
distinguishes our Letter from Ref. [52], in which anoma-
lous plateaus were observed even for particlelike states
such as ν ¼ 4=3. See Supplemental Material, Sec. V [31]
for a comparison of our experiment to these previous
works.
Additionally, evidence for partially unequilibrated coun-

terpropagating charge transport at short distances has been
observed at ν ¼ 2=3, but only in the spin-unpolarized state
[54]. Because of the fact that our 2DEG has relatively high
density and uses a wide, symmetric quantum well, the 2=3
state is likely polarized in our system [55,56]. Numerical
studies in the composite fermion picture predict counter-
propagating modes for both the spin polarized and unpo-
larized ν ¼ 2=3 states [13]. The interplay of spin
polarization and confining potential at ν ¼ 2=3 requires
more investigation.
In order to confirm that the use of the screening well

heterostructure enables the observation of the G ¼ 1
2
ðe2=hÞ

plateau, we have also measured a QPC fabricated on a
standard nonscreening well heterostructure. The standard
heterostructure uses a single GaAs/AlGaAs interface rather
than a quantum well to confine the 2DEG. Figure 4(a)
shows the standard structure [layer stack shown in
Supplemental Material Fig. 1(b) [31] ]. Figure 4(a) shows
conductance versus gate voltage at ν ¼ 1 (note that the
range of gate voltage is smaller because the gate potential is
not screened by the screening layers). In contrast to the
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wide plateau and sharp pinch-off in the screening well
QPCs, this standard structure QPC shows a narrow primary
plateau with G ¼ ðe2=hÞ and a much more gradual
decrease in conductance. At ν ¼ 1 there also appears to
be an intermediate quasiplateau at G ≈ ð1=3Þðe2=hÞ, con-
sistent with the phenomenon of edge reconstruction
reported in [30] and theoretical analysis for the case of
soft confinement [23]. Figure 4(b) shows conductance
versus gate voltage at ν ¼ 2=3, where a clear intermediate
plateau at G ¼ ð1=3Þðe2=hÞ is present, consistent with
previous results using nonscreening well heterostructures
[27,30]. These results support the theoretical picture that a
soft confining potential (as usually realized in standard
GaAs/AlGaAs heterostructures not utilizing screening
layers) results in a reconstructed edge at ν ¼ 2=3 with
an outer strip of filling ν ¼ ð1=3Þ and two downstream
ð1=3Þðe2=hÞ charge modes, as described by the Meir edge
structure [18,19]. The absence of this G ¼ ð1=3Þðe2=hÞ
plateau in the QPCs with sharp confinement indicates that
the outer ν ¼ ð1=3Þ strip does not form, and thus a different
edge structure is present.
Our experiments clearly show the importance of con-

fining potential on edge structure in the quantum Hall
regime. The lack of edge reconstruction may explain why it
has been possible to observe Aharonov-Bohm interference
interference at quantum Hall states such as ν ¼ 1 and
ν ¼ 1=3 in devices using the screening well heterostructure
[8,36,37], but not in devices using standard non-SW
heterostructures [30,57].
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