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In relativistic physics, both atomic collapse in a heavy nucleus and Hawking radiation in a black hole are
predicted to occur through the Klein tunneling process that couples particles and antiparticles. Recently,
atomic collapse states (ACSs) were explicitly realized in graphene because of its relativistic Dirac
excitation with a large “fine structure constant.” However, the essential role of the Klein tunneling in the
ACSs remains elusive in experiment. Here we systematically study the quasibound states in elliptical
graphene quantum dots (GQDs) and two coupled circular GQDs. Bonding and antibonding molecular
collapse states formed by two coupled ACSs are observed in both systems. Our experiments supported by
theoretical calculations indicate that the antibonding state of the ACSs will change into a Klein-tunneling-
induced quasibound state revealing deep connection between the ACSs and the Klein tunneling.
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One of the most well-known predictions by quantum
electrodynamics is atomic collapse states (ACSs) that are
predicted to form when charges of a nucleus exceed 170
[1–3], posing a natural bound on the periodic table of
elements. The ACSs are quite similar to the Hawking
radiation in black holes since both are predicted to occur
accompanied by Klein tunneling [4]. In experiment, reali-
zation of the ACSs in a real atom remains a challenge due to
the requirement of a highly charged nucleus. Graphene’s
relativistic Dirac excitation with “small” Fermi velocity
vF ≈ c=300 (c is the velocity of light in vacuum) makes it
an ideal platform to overcome this challenge [5–7], and
recently, the ACSs were realized in graphene with a
significantly low critical charge [8–11]. Although realizing
the ACSs has achieved great success in graphene, the
essential role of the Klein tunneling during the formation of
the ACSs remains elusive in experiment.
Very recently, the coexistence of the ACSs and the Klein-

tunneling-induced quasibound states, i.e., whispering gal-
lery modes (WGMs) [12–20], was demonstrated explicitly
in graphene quantum dots (GQDs) with Coulomb-like
electrostatic potentials and large cutoff radii [11]. The
WGMs originating from the perfect Klein scattering for
oblique incidences [14] are essentially different from the
ACSs in which electrons with a relatively small angular
momentum cannot escape from the Coulomb attractive
potential in the supercritical regime [6]. In experiment, the
ACSs, which exhibit an exponential energy sequence [6],
locate at the center of the potential field due to collapse by
the Coulomb potential [8]. However, the WGMs, which are
equally spaced in energy, locate at the edge of the potential

profile, forming concentric ring structures [14] (see
Supplemental Material for details [21]). In this Letter,
we systematically study the coupling of two GQDs with
Coulomb-like electrostatic potentials. We observe bonding
and antibonding molecular collapse states of two coupled
ACSs. Our experiments supported by theoretical calcula-
tions demonstrate that the antibonding molecular state of
the ACSs will change into a WGM, revealing deep
connection between the ACSs and the Klein tunneling.
In our experiment, a graphene=WSe2 heterostructure was

obtained by a wet transfer fabrication of a graphene mono-
layer on freshly exfoliated thick WSe2 sheets (see
Supplemental Material for details [21]). As reported pre-
viously, nanoscale WSe2 QDs were frequently observed at
the interface of the graphene=WSe2 heterostructure [11].
Figure 1(a) shows a representative scanning tunneling
microscope (STM) image of an elliptical graphene=WSe2
heterostructureQD (see Fig. S1 in the SupplementalMaterial
for more experimental data [21]). The thickness of the
elliptical QD is 0.8 nm, the same as that of a WSe2
monolayer. The major and minor diameters of the elliptical
QD are about 24.7 and 17.2 nm, respectively. Figure 1(b)
shows an atomic-resolved STM image of the heterostructure
and its fast Fourier transform (FFT) image. The relative
rotation angle between the WSe2 and graphene is about 26°,
and there is no signal of atomic defects and strain structure in
the graphene around the elliptical QD. The WSe2 QDs can
introduce Coulomb-like electrostatic potentials on the gra-
phene above them, which generate both the ACSs and
WGMs in the GQDs [11]. In a two-dimensional isolated
elliptical conductor, the charge density in equilibrium will
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exhibit a pronounced anisotropy [see Fig. 1(c) and
Supplemental Material Fig. S2 [21] ], which is expected to
strongly affect the confined states.
Figure 1(d) shows three representative STS, i.e., dI=dV,

spectra measured around the elliptical GQD. A typical
V-shaped spectrum can be observed in graphene off the
elliptical GQD with the Dirac point Eoff

D ≈ 0.12 eV,
whereas, for the dI=dV spectra measured on the elliptical
GQD, the Dirac point is shifted to Eon

D ≈ 0.5 eV, and a
sequence of resonance peaks arising from temporarily
confined quasibound states [8–20] are clearly observed.
The radially dI=dV spectroscopic maps along the major (Y)
and minor (X) axes of the elliptical GQD are shown in
Fig. 1(e) (see Figs. S3 and S4 in the Supplemental Material
for results in more elliptical GQDs [21]). A significant
difference of electrostatic potentials along the two direc-
tions can be observed. According to the spatial dependence
of the Dirac pointED obtained from Fig. 1(e) (see Fig. S5 in
the Supplemental Material [21]), the confined potential
along both the X and Y axes around the elliptical GQDs can
be described by a Coulomb-like electrostatic potential:

Vx=yðrÞ ¼
(
ℏvF

βx=y
dx=y

; r ≤ dx=y;

ℏvF
βx=y
r ; r > dx=y;

ð1Þ

where ℏ is the reduced Planck constant, r is the distance
from the center of GQD, βx=y ¼ Zx=yα with Zx=y the
number of charges, α ∼ 2.5 is the fine structure constant
of graphene [6], and dx=y is the cutoff radius of the
Coulomb potential. By fitting the experimental potential,
we obtain βy ¼ 6, dy ¼ 7.5 nm in the Y axis and βx ¼ 3.6,
dx ¼ 4.5 nm in the X axis [Fig. 1(e) and Supplemental
Material Fig. S5 [21] ]. The anisotropy of the potentials
strongly affects the spatial distribution of the quasibound
states [Fig. 1(e)]. To explicitly show this, we carry out
energy-fixed dI=dV mappings, which reflect spatial dis-
tributions of the LDOS, as shown in Figs. 2(a)–2(d) (top
panels) (see Fig. S6 in the Supplemental Material for more
experimental results [21]). Obviously, they are quite differ-
ent from that of the circular GQDs [11] and exhibit
anisotropic features.

FIG. 1. (a) STM image of an elliptical GQD (V ¼ 600 mV, I ¼ 100 pA). (b) Top panel: schematic of the heterostructure. Bottom panel:
enlargement of the black dashed square of panel (a). Inset of bottom panel: FFT of the heterostructure. The bright spots represent the
reciprocal lattice of graphene (white dotted circles),WSe2 (green dotted circles), moiré structure of the heterostructure (red dotted circles).
(c) Calculated charge density distributions for isolated circular and elliptical conductors. (d) Typical dI=dV spectra taken on and off an
elliptical GQD. Measured positions of the colored spectra are marked with the corresponding color in panel (a). (e) The radially dI=dV
spectroscopic maps along the X axis and Y axis of the elliptical GQD. (f) The calculated LDOS corresponds to (d). (g) The calculated
space-energy maps of the LDOS along theX axis and Y axis of the elliptical GQD. The red dashed lines in (e) and (g) indicate Dirac point
energy in theory calculation. The black solid (purple hollow) dots indicate the quasibound states via the WGMs (ACSs) confinement.
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To fully understand the electronic properties of the
elliptical GQDs, we numerically study the problem with
an elliptical Coulomb-like electrostatic potential:

Veðx;yÞ¼
8<
:

ℏvFβ0
r0

¼ ℏvFβx
dx

¼ ℏvFβy
dy

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=dxÞ2þðy=dyÞ2

q
≤1;

ℏvFβ0=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=dxÞ2þðy=dyÞ2

p ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=dxÞ2þðy=dyÞ2

q
>1.

ð2Þ

With considering the parameters βx=y and dx=y extracted
from the experimental results, we obtain theoretical dI=dV
spectra [Fig. 1(f)] space-energy maps of the LDOS of the
elliptical GQD [Fig. 1(g)], and spatial distributions of the
N1–N4 [Figs. 2(a)–2(d), bottom panels]. Obviously, they
are in good agreement with the experimental results. We
also calculate the evolution of the quasibound states from
the circular GQD to the elliptical GQD to explore their
nature (see Figs. S7 and S12 in the Supplemental Material
[21]). For a circular GQD, there are both the ACSs and the
WGM states [11]. The ACSs locate at the center of the
GQD and follow an exponential function in the energy
levels. The almost equally-energy-spaced quasibound
states at the edge of the GQD are the WGMs (see
Figs. S8–S10 in the Supplemental Material for further
discussion [21]). The anisotropic elliptical Coulomb poten-
tial can be obtained by a smooth transition from a circular
Coulomb potential (see Fig. S7 in the Supplemental
Material [21]). Here the N1 and N2 quasibound states in
the elliptical GQD evolve from the first ACS and WGM in
the circular GQD, respectively. Our results indicate the
coexistence of electron WGMs and ACSs in the elliptical
GQDs. In our experiment, we can observe Friedel
oscillations outside the GQD [11] (see Fig. S11 in the

Supplemental Material [21]). Such an effect does not affect
the quasibound states in the GQD and is not considered in
our calculations. It is interesting to note that the WGMs and
the ACSs tend to distribute separately in different regions
of the elliptical GQD, which can effectively reduce the
Coulomb interaction. This unique space distribution
reminds us of the formation of bonding and antibonding
molecular states of two coupled quasibound states
[17,36,37], suggesting that the WGMs (ACSs) arise from
antibonding (bonding) molecular states. Such a result is
unexpected because it is believed that the WGMs [12,38]
and the ACSs [5–7] have distinct underlying origins.
To further explore the relationship between the WGMs

(ACSs) in the elliptical GQD and the antibonding (bonding)
molecular states of two coupled GQDs, we systematically
study quasibound states of two coupled GQDs, as summa-
rized in Fig. 3. In our experiment, nanoscalemonolayer-thick
WSe2 antidots are usually observed around the WSe2 QDs
(Figs. S1 and S13 in Supplemental Material [21]), and the
WSe2 antidot also generates a Coulomb-like potential on
the graphene covering it, as shown in Fig. S13 of the
Supplemental Material [21]. Therefore, we observe both
theWGMsandACSs in graphene covering theWSe2 antidot.
In our experiment, we can use tip manipulation to move the
WSe2 QD toward the antidot, as shown in Figs. 3(a) and 3(d).
Figures 3(b) and3(c) show themain spectroscopic features of
two coupled circular GQDs forming the bonding (N1) and
antibonding (N2) states. Obviously, they are quite different
from the quasibound states in an isolated circular GQD. By
further increasing the coupling of the two GQDs [Fig. 3(d)],
they exhibit quite similar spectroscopic features to that of a
single elliptical GQD [see Figs. 2(a), 2(b), and 3(f)]. The
differences between the experiment and theory may arise
from the deviations of potentials fields in experiment from
the ideal elliptic Coulombic potential in theory (see Sec. 9 of

FIG. 2. (a)–(d) Top panels: dI=dV maps at Vbias ¼ 0.19 V (N1), 0.098 V (N2), 0.05 V (N3), and −0.05 V (N4). N1–N4 are the
quasibound states in the elliptical GQD. Bottom panels: calculated LDOS in the elliptical GQD at E ¼ 0.19 eV (N1), 0.09 eV (N2),
0.04 eV (N3), and at −0.059 eV (N4). The white dashed lines indicate the profile of the elliptical GQD. The green dotted lines indicate
the cutoff area of the Coulomb-like electrostatic potential.
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the Supplemental Material for details [21]). Such a result
indicates that the first ACS (WGM) of the elliptical GQD can
be viewed as the bonding (antibonding) molecular states of
two coupled GQDs.

To further understand our experimental results, we cal-
culate the evolution of quasibound states from a molecular
Coulomb potential to the elliptical Coulomb potential. As
shown in Fig. 4(a), the molecular Coulomb potential

FIG. 3. (a) STM image of twoGQDs (V ¼ 500 mV, I ¼ 100 pA). (b) dI=dV spectroscopic mapping along the black arrow in panel (a).
(c)Energy-fixeddI=dVmappings atN1 (bonding state) andN2 (antibonding state) of themolecularGQD inpanel (a). (d) STMimage of the
twoGQDs with a reduced separating distance∼9 nm (V ¼ 400 mV,I ¼ 80 pA). (e) dI=dV spectroscopic mapping along the black arrow
in panel (d). (f) Energy-fixed dI=dV mappings at N1 (bonding state) and N2 (antibonding state) of the molecular GQD in panel (d).

FIG. 4. (a) Configurations of molecular Coulomb potential and elliptical Coulomb potential. (b) Potential profiles of the joint field
Vðx; yÞ for different λ. (c)–(e) Top panels: the calculated LDOS space-energy maps along the Y axis of the GQDs. Middle and bottom
panels: the corresponding LDOS maps of the first two quasibound states N1 and N2.
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Vmðx; yÞ is composed of two identical circular Coulomb
potentials separated by a distance dy on the Y axis:

Vmðx; yÞ ¼ VAðx; yÞ þ VBðx; yÞ: ð3Þ

Here the centers of the two circular potential fields are at
ðx; yÞ ¼ ½0; ðdy=2Þ� and ½0;−ðdy=2Þ� (see Supplemental
Material for details [21]). When two circular GQDs are
closely coupled, the bonding and antibonding states can be
obtained using the linear combination of orbitals method,
similar to the H2 molecule [39–41]. Here, the ACSs and
WGMs, both ofwhich can be describedbyquantumnumbers
ðm; nÞ in a circular GQD, can be also regarded as the electron
orbits (see Fig. S9 of the Supplemental Material for the
details [21]). Then, they couple to form the bonding
and antibonding states, which are spatially redistributed
[17,36,37], as shown in Fig. 4(c). The redistributed quasi-
bound states in the molecular GQD appear to be very similar
to that in the elliptical GQD. To analyze the relation between
the quasibound states in the elliptical GQDand themolecular
GQD, we use the potential field Vðx;yÞ¼ð1−λÞVmðx;yÞþ
λVeðx;yÞ with adjustable λ to achieve a smooth evolution
from the molecular potential Vmðx; yÞ to the elliptical
potential Veðx; yÞ, as shown in Fig. 4(b) (the theoretical
bulk Dirac point energy is also included in the potential).
Figures 4(c)–4(e) display the calculated spatial distribution of
the quasibound states in the GQDswith different λ. At λ ¼ 0,
i.e., the standard molecular GQDs, the first two quasibound
states correspond to the bonding and antibonding states of the
first ACS of each single circular GQD. The bonding state
exhibits the LDOS concentrating on the center, while the
antibonding state shows the LDOS concentrating on the two
endsof themolecularGQDs [Fig. 4(c)].With increasing λ, the
ACS bonding state (N1) of the molecular GQDs gradually
evolves into the first ACS of the elliptical GQD, and the ACS
antibonding state (N2) evolves into the first WGM of the
elliptical GQD. We would like to mention that higher order
ACSs andWGMs experience a similar process. Analogously,
the bonding state of WGMs will evolve into the new ACSs,
but the antibonding states of WGMs and unbonded WGMs
will evolve into the new WGMs (see Fig. S14 in the
Supplemental Material for details [21]).
The above calculation strongly supports the results of our

experiments (Figs. 2 and 3), revealing deep connection
between the ACSs and the Klein tunneling. Actually, the
physical origins of the ACSs and WGMs are both related to
Klein tunneling and scattering. In the supercritical regime,
the electronlike (or holelike) states with a relatively small
orbital quantum number jmþ 1

2
j < jβj will fall inward

toward the center of the GQDs before spiraling back out
and coupling to the holelike (electronlike) states to run
away through the Klein tunneling (see Supplemental
Materials for details [21]). The situation of the WGMs is
different. They are quasitrapped by nearly perfect reflec-
tions for oblique incidences occurring at the circular p-n

junction based on Klein scattering. Hence, although these
two types of quasibound states are distinct, it is natural that
they could evolve into each other (see Supplemental
Material Figs. S16 and S17 along with details and dis-
cussion from the perspective of semiclassical particle
orbits [21]).
In summary, we systematically study the ACSs and the

WGMs in GQDs. Bonding and antibonding molecular
collapse states formed by two coupled ACSs are observed.
The observed transition between the WGMs and ACSs in
this Letter reveals the deep connection between them.
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