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We compute ionic free energy adsorption profiles at an aqueous graphene interface by developing a self-
consistent approach. To do so, we design a microscopic model for water and put the liquid on an equal
footing with the graphene described by its electronic band structure. By evaluating progressively the
electronic and dipolar coupled electrostatic interactions, we show that the coupling level including mutual
graphene and water screening permits one to recover remarkably the precision of extensive quantum
simulations. We further derive the potential of mean force evolution of several alkali cations.
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The peculiar properties of the water-graphene interface
have been unveiled in pioneering experimental [1–3] and
theoretical [4–9] studies. This results, in particular, in the
extraordinary transport efficiency in water-filled carbon
nanotubes and nanochannels [10–12]. Moreover, the pres-
ence of charges in thewet nanometric channels leads to exotic
ionic behaviors [13–16] that are the cornerstone of energy
storage applications [17] and blue energy harvesting [18].
Although experimental data [19,20] regarding specific gra-
phene-ion interactions in water are still few in number, the
need to overtake classical molecular dynamics (MD) approx-
imations and to model them at the same level as metal-liquid
interfaces [21,22] has been acknowledged. Beyond classical
approaches, state-of-the-art quantum calculations combined
with solvation codes [23–25] and even fully explicit ab initio
methods [26,27]—treating both the liquid and the solid at the
Born-Oppenheimer level—represent the current state of the
art, but their computational cost remains prohibitive for
systematic investigations. On the other hand, recent semi-
classical numerical studies have described graphene using a
perfect metal [28], a Thomas-Fermi [29,30], and an atomistic
polarizable force field [21,31] model. Nevertheless, theses
studies ignore the semimetallic band structure of graphene.
Continuum electrostatic approaches [32,33] permit one to
evaluate the well-known attractive “image-charge” electro-
static potential in a dielectric medium. Spatial correlations of
both the fluid and the metal can a priori be included [34–36]
to investigate microscopic effects. However, the self-
consistent electrostatic problem is not yet addressed, and
collective interactions between electrons andmolecules in the
liquid are only partially and phenomenologically taken into
account.

In this Letter, we develop a quantum and classical field
framework to investigate electrostatic interactions at the
aqueous graphene interface. We propose a microscopic
model for the nonlocal dielectric properties of bulk and
interfacial water and compute the polarization function of
graphene from a tight-binding model. We evaluate the
response function of a nanometric slab of water confined
between two graphene sheets by including gradually
coupled electrostatic interactions between the electrons
of the semimetal and the water molecules. This allows
us to derive an accurate evolution of the potential of mean
force (PMF) for a single cation solvated in the graphene
channel. Finally, we explore the as-derived PMF profiles of
a few alkali ions.
Theoretical framework.—Our framework, detailed in

Supplemental Material Sec. 1 [37], takes roots in quantum
field theory and uses Feynman diagrammatics to derive the
Green’s function of the interfacial system. As predicted
by quantum chemical calculations, the graphene-water
interface presents a negligible electronic corrugation [5]
and is chemically inactive with no mixing of electronic
states [7,38]. We focus on building the nonlocal linear
response functions χ of the system, that relate the mean
induced charge density hnindi to an external electrostatic
potential ϕext generated by a charge distribution next. The
generic equations used to build the Green’s function w of
the system and, therefore, the mean electrostatic potential
hϕtoti can be summarized as follows:

ϕext ¼ v � next; hnindi ¼ χ � ϕext;

w ¼ vþ v � χ � v; hϕtoti ¼ w � next; ð1Þ
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where v can denote the bare (v ¼ 1=4πϵ0x, with x the
distance in 3D space) or an effective Coulomb potential and
� the spatial convolution. The starting assumption to build χ
is to consider that particles are independent and to derive an
noninteracting response function χð0Þ. Next, χð0Þ is renor-
malized by considering interactions at the mean-field level:
Independent particles respond to the external potential plus
the mean polarization potential hϕpoli of the other similar
particles. The induced charge density thus reads hnindi ¼
χð0Þ � ½ϕext þ hϕpoli� with hϕpoli ¼ vinter � hnindi and where
vinter is the effective interparticle potential. This recursive
equation combined with Eq. (1) gives

χ ¼ χð0Þ þ χð0Þ � vinter � χ: ð2Þ

Equation (1) and (2) sets of equations give the definition for
vinter and are used in the following to build the response
function of the water ðχwÞ and the electronic ðχeÞ part
separately but also to build χ or w of the entire interfacial
system (see Supplemental Material Sec. 2.2 [37], which
includes Refs. [39,40]). The interfacial system consists of a
channel of nanometric height L made of two graphene
sheets and filled with water.
Water bulk.—We now build the response function χw of

bulk water. Using Eq. (2), the effective electrostatic
potential in bulk water vinter ¼ veffw can be written veffw ðkÞ¼
1=χð0Þw ðkÞ−1=χðkÞ, with k¼jkj. The fluctuation-dissipation
theorem gives χð0Þw ðkÞ ¼ −βSð0Þw ðkÞ, where β ¼ 1=kBT and

Sð0Þw ðkÞ is the single-molecule—or “self-”—charge struc-
ture factor, and χwðkÞ ¼ −βSwðkÞ, where SwðkÞ is the
charge structure factor of the liquid. Here, we apply this
framework to the widely used three-point-charge model of

water, SPC/E [41]. The analytical expression of Sð0Þw ðkÞ is
given in Supplemental Material Sec. 3.1.1 [37], which
includes Refs. [41–43]. χðkÞ can be computed in a MD
simulation—e.g., the results of Ref. [44] computing the
polarization response function χ̄w ¼ −χwðkÞ=ϵ0k2 that are
reported in Fig. 1(a). The sharp peak of χ̄wðkÞ centered at
k ≃ 3 Å illustrates the nonlocal and overscreening proper-
ties of water [45].
From the numerical knowledge of the effective Coulomb

potential for water veffw ðkÞ, we suggest the following ansatz:

veffw ðkÞ ¼ 1

ϵ0ε
eff
w

�
1

k2
−

1

k2 þ κ2
−
γe−k

2=2κ2

κ2
ffiffiffiffiffiffi
2π

p
�
; ð3Þ

with the inverse screening length κ, the prefactor γ, and the
effective permittivity εeffw as parameters. The last one is
fixed to recover the bulk dielectric permittivity of SPC/E
water and can be expressed as a function of the molecular
dipole moment and bulk density of the fluid. The values of
(κ, γ) are adjusted to reproduce the position and the
amplitude of the overscreening peak of χ̄w. The ansatz

ensures χwðkÞ → χð0Þw ðkÞ for k → ∞ (see details in
Supplemental Material Sec. 3.1.2 [37]).
We plot the polarization response function derived from

our framework: χ̄wðkÞ ¼ −½1=χð0Þw ðkÞ − veffw ðkÞ�−1=k2ϵ0
[orange curve, Fig. 1(a)]. Our model captures nicely the
dielectric properties of bulk water at low k.
Water slab.—We turn to the dielectric response of a

water slab confined between two infinite flat interfaces in
the ðx; yÞ plane located in z ¼ 0 and z ¼ L, respectively
[see the sketch in Fig. 1(b)]. We describe the system using
cylindrical coordinates in real and Fourier spaces, x ¼
ðr; zÞ with r lying in the interfacial plane and k ¼ ðq; qzÞ
with q the in-plane Fourier component [see Fig. 1(c), right].
According to the in-plane invariance, the response function
can be written as χwðq; z; z0Þ. We show in Supplemental
Material Sec. 3.2.1 [37] that we can write

χð0Þw ðq; z; z0Þ ≃ −β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðzÞn0ðz0Þ

p
n0

Sð0Þw ðq; jz − z0jÞ; ð4Þ

where Sð0Þw ðq; jz − z0jÞ ¼ R dqz
2π e

iqzjz−z0jSð0Þw ðkÞ and n0ðzÞ is
the molecular density profile that converges to bulk
density n0 in the middle of the channel [see Fig. 1(b)].
We assume that the water molecules interact in the slab
between themselves as in bulk, so the slab-geometry
effective potential veffw ðq; jz − z0jÞ can be obtained by

FIG. 1. Dielectric response functions of water. (a) Susceptibility
of SPC/E water obtained with MD [44] and with the theoretical
model for ϵeffw ¼ 1.04 (see Supplemental Material Sec. 3.1.2 [37]),
κ ¼ 1.65 Å−1, and γ ¼ 0.99. We show the dimensionless quan-
tities χ̄ðkÞ ¼ −χðkÞ=ϵ0k2. (b) Schematic drawing of thewater slab
and of the two considered molecular density profiles n0ðzÞ for
L ¼ 3 nm. The inset shows the two parameters of the smoothed
step function model for n0ðzÞ: d0 and σ0. (c) Local dielectric
susceptibility χ̄wðzÞ of the slabPz ¼ χ̄wðzÞDz corresponding to the
two molecular profiles n0ðzÞ in (b).
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Fourier transforming Eq. (3) (see Supplemental Material
Sec. 3.2.2 [37]). To inverse Eq. (2) and carry out
all subsequent computations, we resort to matrix multi-
plications in the discretized space along z and z0. The
ði; jÞth element of the matrix M½zi; z0j� is given by the
function mðq; zi; z0jÞ. The solution of Eq. (2) reads

X ¼ ½1 − Xð0ÞV interðdzÞ2�−1Xð0Þ, where dz ¼ 0.02 Å is
the grid spacing and where a matrix of size bL=dzc2 has
been inverted.
We now derive the local dielectric susceptibility χ̄wðzÞ,

relating the response polarization field Pz to a constant
excitation D ¼ Dzez such that PzðzÞ ¼ χ̄wðzÞDz. We show
in Supplemental Material Sec. 4.1 [37] that

χ̄wðzÞ ¼ 1 −
d
dz

�Z
L

0

dz0ε−1w ðq → 0; z; z0Þz0
�
; ð5Þ

with ww ¼ ε−1w � v ¼ vþ v � χw � v, and ww is the Green’s
function of the water slab alone, according to Eq. (1).
The slab water density profile n0ðzÞ, which describes the

interaction between water and graphene, is an input of the
model [see Eq. (4)]. We first consider a generic smoothed
step function model, which captures the vacuum layer
between the fluid and a surface (encoded by d0) and the
width (σ0) of the fluid interface [inset in Fig. 1(b)]. In
agreement with previous results [8,46,47], the susceptibil-
ity calculated in this framework [solid line in Fig. 1(c)]
presents an alternation of overresponding [χ̄wðzÞ > χb] and
underresponding [χ̄wðzÞ < χb] layers before reaching its
bulk value χb ¼ 1 − 1=εw for z > 1.25 nm. Refining n0ðzÞ
by extracting the hydrogen molecular density from a MD
simulation [9] using Lennard-Jones parameters by Werder
et al. [48] [see Fig. 1(b)] induces minor modifications in
χ̄wðzÞ [dotted line in Fig. 1(c)]. This first result validates our
analytical microscopic model for confined water.
Graphene sheet.—Regarding the solid phase, the non-

interacting response function χð0Þe can be computed, and we
choose a tight-binding model defined elsewhere [49].
Single-particle wave functions ψν;pðxÞ and corresponding
eigenenergies ϵν;p are labeled with the band index ν and the
in-plane wave vector p. For one graphene sheet, assuming
the small spatial extent of the pz carbon orbitals, we

consider the two-dimensional susceptibility χð0Þe ðq; z; z0Þ ¼
χð0Þe ðqÞδðzÞδðz0Þ, where χð0Þe is (minus) the two-dimensional
polarizability given by the bare bubble diagram [50]:

χð0Þe ðqÞ ¼ 2

A

X
ν;μ;p

jλν;μp;pþqj2
nFðϵμ;pþqÞ − nFðϵν;pÞ

ϵμ;pþq − ϵν;p
; ð6Þ

where A is the surface area, nF the Fermi-Dirac distribu-
tion, and λν;μp;pþq ¼ R

dxψ�
ν;pðxÞψμ;pþqðxÞe−iq;r. We com-

pute Eq. (6) analytically at T ¼ 0 K [51] (see result in
Supplemental Material Sec. 5.1 [37]) and use a Fermi level
of EF ¼ kBT to include a minimal number of free electrons.

The response function χe is built from Eq. (2) using the bare
Coulomb potential for the electron-electron interacting
potential, vinter ¼ v, which corresponds to the well-known
random-phase approximation [52] (see Supplemental
Material Sec. 5.2 [37]). The case of two interacting
graphene sheets is detailed in Supplemental Material
Sec. 5.2 [37].
PMF modeling and coupled interactions.—Turning to

the computation of the PMF, we first derive the Coulomb
energy at a mean-field level defined as

FðzÞ ¼ 1

2

ZZ
dxdx0nextðxÞΔwðx;x0Þnextðx0Þ; ð7Þ

where Δw ¼ w − v. A spherical test charge of radius b is
placed in the channel at the altitude x ¼ ð0; 0; zÞ such that
nextðxÞ ¼ �eδðb − jx − zezjÞ=4πb2. The test charge region
is assumed to respond as water. We define the PMF as
ΔFðzÞ ¼ FðzÞ − FðL=2Þ. It thus contains only electrostatic
contributions and neglects the short-range van der Waals
interactions. We now gradually introduce coupled inter-
actions in three steps labeled uncoupled, semicoupled, and
fully coupled to build w from the knowledge of χe and χw.
Figure 2 reports the computed Feynman diagrams and

the sketched coupling scenarios. First, we consider the
uncoupled case, where water and graphene are blind to each
other such that w is clearly separable:

wuncoupled ¼ ww þ v � χe � v: ð8Þ

Second, we consider the semicoupled scenario where the
polarization charge on the graphene surface results from the
potential exerted by the ion and surrounding water mol-
ecules. This is the sum of the bare ionic potential and the
one induced by the solvating structure of dipoles, that is,
the screened potential that is obtained by the water slab
Green’s function ww, and, therefore,

FIG. 2. (a) Computed Feynman diagrams included in the
Green’s functions for various approximations. The colors of w
match the one of curves in Fig. 3. The dashed line represents the
Coulomb potential. The hatched bubble diagram depicts χe.
(b) Schematic illustration of the screening in the different cases
(see the text for interpretation).
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wsemicoupled ¼ ww þ ww � χe � ww: ð9Þ

It is equivalent to an interfacial semiclassical simulation
adding a self-consistent optimization of the surface polari-
zation at each time step, taking into account fixed—and
equal to their values in vacuum—site-site interactions of
the atomistic model of the metal. For analytical approaches,
it corresponds to the ion-metal electrostatic interaction
derived in the pioneering work of Vorotyntsev and
Kornyshev [34] and later [53]. Finally, the last fully
coupled case unveils the presence of the polar liquid for
electrons of the solid. Electron-electron interactions are
effectively modified due to the presence of water, so that we

introduce the in situ response function of the metal χðwÞe

which is built from Eq. (2) with vinter ¼ ww. Note that this
coupling effect cannot be included in a simple way in the
standard approaches [34,53]. The most refined Green’s
function systems, therefore, read

wfully coupled ¼ ww þ ww � χðwÞe � ww: ð10Þ

With the above w expressions, three different PMFs can be
computed using Eq. (7). Note that the double integration of
Eq. (7) is made in Fourier space and by matrix multipli-
cation [54]. We compute all the PMFs for L ¼ 6 nm and
using the first density model for n0ðzÞ with σ0 ¼ 0.3 Å [8].
The microscopic distance d0 is determined by imposing the
long-wavelength limit of the surface charge structure factor
of water at the interface [9] and equals d0 ¼ 1.3 Å.
To gain insights on the electronic and water contributions

to the PMF, we decompose the free energy contribution into
two terms: F ¼ Fe þ Fw, where Fw contains the contri-
bution of water as in an air-water interface replacing w with
ww in Eq. (7). We could consider other substrates by

changing χð0Þe in Eq. (6).
Results and discussions.—Figure 3(a) displays the result-

ing different computed profiles for ΔF for one single
positive charge of radius b ¼ 2 Å, together with a reference
curve computed recently from an ab initio molecular
dynamics (AIMD) study, for Kþ solvated in a 2-nm-thick
water slab on graphene [27]. In the AIMD simulation, the
limited thickness of the water slab induces a second water-
air interface, explaining the nonmonotonic and repulsive
ab initio PMF behavior above 1 nm. This large range of
graphene-water distance (1 < z < 2 nm) is not meaningful
here. Hence, for the sake of comparison, we shift the
ab initio PMF such that it is vanishing in the middle of the
water slab, for z around 1 nm [black dots, Fig. 3(a)].
The water contribution ΔFw shows the expected repulsive
behavior of the ion at an air interface [blue curve, Fig. 3(a)].
Concerning the water-graphene interface, the uncoupled
PMF profile [red curve, Fig. 3(a)] is strongly attractive and
presents oscillations with small amplitudes near the surface

stemming from the nonlocal dielectric response of water.
Moreover, it deviates a lot from the ab initio plot.
Moving to the semicoupled PMF profile [orange curve,

Fig. 3(a)], its energy position is shifted to positive values
fingerprinting a long-range repulsion and a net reduction
of the graphene-ion interaction due to surrounding water
molecules. Interestingly, this result is in quantitative
agreement with semiclassical simulations [21,28,55] using
ad hoc surface polarization models (Supplemental Material
Sec. 6.2 [37]).
Finally, the fully coupled PMF curve [green curve in

Fig. 3(a)] reveals a reamplification of the wall-ion attraction
by several thermal energy units and matches almost
quantitatively the ab initio PMF. This is the key finding
of our approach. The nice agreement suggests that this
semianalytical approach incorporating electrostatics in a
self-consistent way is able to reproduce some key features
of the state-of-art reference PMF like the position and
amplitude of the three local minima. The stabilizing effect
present in the fully coupled case can be qualitatively
understood as follows. The absence of repulsive interaction
between charge carriers would make them accumulate to
one point in order to screen the ionic potential. Thanks to
electron-electron interactions, a finite polarization charge
can accumulate on the surface as shown by the uncoupled
case cartoon in Fig. 2(b). Water molecules actually screen
the ionic potential and reduce the polarization charge
[semicoupled case, Fig. 2(b)], but in the last fully coupled
case, the presence of water effectively reduces electron-
electron interactions—by roughly a factor of ðεw þ 1Þ=2
for electrons that are far apart as shown in Supplemental

FIG. 3. (a) PMF of Kþ (b ¼ 2 Å) at the graphene-water
interface. Models with increasing coupling (solid lines) compared
to a graphene-free model (blue line) and ab initio simulations [27]
(black dots with error bars). (b) Detailed contributions to the PMF
from water (b1) and from graphene ðb2Þ with increasing ionic
radius from point charge (blue) to large radius (yellow). For ΔFe,
the ionic center is placed at increasing altitude x ¼ ð0; 0; zþ bÞ
for increasing radius. ðb3Þ Comparative PMF for three alkali ions.
The PMF for Liþ (respectively, Csþ) is obtained using b ¼ 1 Å
(respectively, b ¼ 3 Å).
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Material Sec. 6.3 [37]. As a result, the polarization charge
gets reamplified and so does the surface-ion screened
potential. The plots differ significantly at short distance,
z < 0.5 nm, where nonelectrostatic contributions of the
PMF—not considered here—are dominant [33].
We now investigate the variations of the PMF with

varying radius b ranging from point charge to 3 Å with
detailed contributions from water and graphene. Figure 3
(b1) shows that water repels more strongly smaller ions
from the interface. This can be understood by considering
the hydrated radius of the cations—defined in continuous
theories as the range on which the ion polarizes the
surrounding fluid—that is inversely proportional to the
ionic radius [56]. Coming from the bulk, Liþ is the first to
break its solvation shell. Figure 3(b2) compares the non-
monotonic surface contribution ΔFe for the series of ions,
which center is shifted so that the available space for water
molecules between ion and surface is equal for each ion.
We link the increasing attraction for smaller radii to the
ordering degree of the hydration shells as follows. In the
limit of poorly structured hydration shells—e.g., for Csþ—
we find the monotonic surface-ion potential of an attenu-
ated charge in vacuum. The opposite limit is a point charge
with three highly ordered hydration shells. This gives rise
to three special places where icelike water, with a low
permittivity, is practically transparent to the potential
stemming from the polarization charge on the graphene
surface. Summing both contributions in Fig. 3(b3) for three
cations in the alkali series leads to complex PMF profiles.
We observe that for increasing radius the three local
minima are stabilized in energy, in agreement with an
increased capacitance [20] and a reduced hydration
energy [24]. Indeed, small ions like Liþ manifest a strong
solvation environment difficult to break hampering its
adsorption. Proceeding down the series, Csþ yields a weak
solvation shell which can be easily desolvated at the
graphene interface.
Conclusion.—In this Letter, we build a self-consistent

theoretical framework which permits one to investigate
analytically the single ionic adsorption at the graphene-
water interface. By including the semimetallic band
structure of graphene, building a microscopic model for
interfacial water, and considering the mutual screening of
the two materials, we obtained results that are in excellent
agreement with expensive quantum free energy perturba-
tion methods, at a negligible computational cost. Our
PMF predictions for the alkali series are in agreement
with experimental observations and permit one to dis-
tinguish the liquid water and graphene surface contribu-
tions. We hope that this versatile and generalizable
method will renew some interest in semianalytical
approaches and be used to investigate more complex
systems involving, for example, ion-ion interactions in
nanochannels.

Our code is freely available in the GitHub repository [57].
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