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We show that instantaneous spatial singular modes of light in a dynamically evolving, turbulent
atmosphere offer significantly improved high-fidelity signal transmission as compared to standard
encoding bases corrected by adaptive optics. Their enhanced stability in stronger turbulence is associated
with a subdiffusive algebraic decay of the transmitted power with evolution time.
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Introduction.—Wave transport in random scattering
media is ubiquitous in communication, sensing, and im-
aging, from astronomical [1] over mesoscopic [2–4] to
microscopic scales [5]. In all these rather diverse physical
settings, the common goal is to faithfully transmit and filter
relevant information generated by the sender, probed by the
scattering wave, or emitted by some unknown object(s). To
achieve an efficient transmission and retrieval of informa-
tion, it is indispensable to mitigate the random, i.e.,
uncontrolled modulation of the transmitted signal’s phase
and intensity profile.
In the atmosphere, the primary sources of uncontrolled

light modulations are turbulent eddies, i.e., blobs of air with
smoothly varying refractive index. On the one hand, the
minimal size of turbulent eddies is much larger than optical
wavelengths [6]; accordingly scattering on such eddies
occurs mainly in the forward direction [7]. On the other
hand, the eddies’ sizes are comparable to the typical
transverse width of propagating beams [6], resulting in
random phase shifts of the light’s transverse profile [7].
Furthermore, a combination of refraction and diffraction
gives rise to intensity fluctuations upon transmission [7].
Although phase errors can be compensated for by adaptive
optics (AO) [1,6,8–11], the latter cannot alleviate intensity
fluctuations [12], nor can AO reduce transmission losses
arising due to finite-size apertures.
We propose to exploit the medium’s intrinsic properties

for signal transmission across random disorder: Wave
propagation in static disordered media generically allows
for the formation of highly transmitting spatial modes
[13–15]. These modes qualify due to their minimal trans-
verse losses as ideal candidates for high-dimensional signal
encoding. However, their stability is challenged in a
dynamically evolving medium—here the Earth’s atmos-
phere. Yet, even in the time-dependent atmosphere the

channel’s geometry and turbulence parameters remain
invariant. Therefore, one can expect that certain robust
features are inscribed into instantaneous modes lending
them persistent stability properties. Our present purpose is
to consolidate this expectation, and to quantify the time-
scales over which such highly transmitting modes offer
resilient signal transmission with reduced losses.
The model.—We consider the horizontal propagation of a

monochromatic laser beam through a clear atmospheric
channel (e.g., free of fog or clouds), limited by two coaxial
circular source and receiver apertures with diameters Dsrc
and Drec, respectively; see Fig. 1. We study the spatial field
distribution of the propagating beam, and choose a wave-
length of λ ¼ 1550 nm which is in the infrared trans-
parency window of the Earth’s atmosphere [16,17].
Furthermore, we consider propagation distances much
shorter than the light’s transport mean free path [18,19],
thereby neglecting the small attenuation of the field due to
molecular and aerosol absorption and scattering [16,17].
In this case, the propagation of a scalar light wave
ψðr ¼ x; y; zÞ obeys the stochastic parabolic equation [17]

−2ik
∂ψðrÞ
∂z

¼ Δ⊥ψðrÞ þ 2k2δnðr; tÞψðrÞ; ð1Þ

where k ¼ 2π=λ,Δ⊥—the transverse Laplace operator with
respect to the propagation axis z—accounts for wave
diffraction, and δnðr; tÞ is the fluctuating part of the
refractive index of air, to model the random turbulent
potential and its time dependence.
The statistical properties of δnðr; tÞ in Eq. (1) are

governed, according to Kolmogorov theory [20], by the
refractive index power spectrum ΦnðκÞ ∼ κ−11=3, where κ
denotes the transverse spatial frequency of refractive index
fluctuations. These random inhomogeneities of the refrac-
tive index induce phase distortions with typical correlation
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radius given by the Fried parameter r0 [17], which is
inversely proportional to the turbulence strength. The Fried
parameter typically varies on the timescale of hours [17]
and can thus be assumed to be time independent.
Furthermore, phase distortions combined with diffraction
give rise to intensity fluctuations, whose strength is
quantified by the Rytov variance σ2Rðr0; LÞ [11,21,22].
For fixed times t, the stochastic parabolic Eq. (1) is

accurately solved by a split-step method [12,23,24], which
relies on segmenting the propagation path into discrete,
medium-induced phase modulations, i.e., phase screens,
equally interconnected by vacuum diffraction (Fig. 1).
Although every elementary propagation step of length
Δz only introduces phase errors [25], the assembled path
reliably models as well intensity fluctuations which origi-
nate from constructive or destructive interference. To
implement this numerically, we employ Fourier optics
methods [23,26–28] and standard phase screens [23,28]
augmented by Zernike polynomials [29].
Mathematically, the combination of phase distortions

and free diffraction can be represented by the unitary
operator Uturb acting on the propagating wave; the geo-
metric truncation due to source and receiver apertures
(Fig. 1) are captured by projection operators Πsrc and
Πrec, respectively. Combined, this defines the channel’s
turbulence operator T turb ¼ ΠrecUturbΠsrc which maps
modes from the source space Hsrc onto the receiver space
Hrec. In general, this operator is nonunitary, since light
escapes the receiver aperture due to diffraction, turbulence-
induced broadening, and beam wandering [17].
By performing a singular value decomposition (SVD)

[13,30] of T turb, we find its orthonormal transmission
channels: Source modes vsðρÞ ∈ Hsrc with mode index s
are coupled bijectively to receiver modes usðρ0Þ ∈ Hrec,
each associated with singular values τs quantifying the
transmitted power per channel, where ρ ∈ Dsrc and ρ0 ∈
Drec are transverse position vectors in the source and

receiver apertures. The action of T turb on an input state
Ψ ∈ Hsrc thus has the explicit form

ðT turb⋆ΨÞðρ0Þ ¼
XS−1
s¼0

ffiffiffiffi
τs

p
usðρ0ÞhvsðρÞ;ΨðρÞi; ð2Þ

where ⋆ denotes the convolution, h:; :i stands for the
standard scalar product in transverse space, and the number
S of singular modes with nonvanishing weight depends
on the source and receiver apertures’ cross sections.
Practically, the SVD is applied to a matrix representation
of the turbulence operator, known as transmission matrix
ðT turbÞij ¼ hϕiðρ0Þ; ðT turb⋆ψ jÞðρ0Þi, where ψ jðρÞ ∈ Hsrc

and ϕiðρ0Þ ∈ Hrec are basis modes on the source and
receiver side, respectively. For an accurate representation
of transmitted fields confined by circular apertures, we
choose Laguerre-Gaussian (LG) modes at the source side,
which also feature convenient diffraction properties [17].
To resolve the fine details of turbulence-induced distortions
imprinted into the receiver modes a large numberQ ≫ S of
pixel modes is employed at the receiver’s end. All param-
eters of our model [31] are chosen to match realistic
experimental conditions [32,33].
Properties of instantaneous singular modes.—Before

considering dynamical turbulence, we investigate the stat-
istical properties of singular modes associated with an
instantaneous atmospheric realization. The average distri-
bution of singular values over an ensemble of random
realizations is known in the asymptotic regime of weak
turbulence [34] and aligns with our results. But our pre-
sent numerical approach captures the properties of the
singular modes under general, nonasymptotic turbulence
conditions, and thus considerably expands over earlier
studies [34–37]. Representative examples of intensity
and phase distributions of highly transmitting (i.e., asso-
ciated singular values τs close to 1) source (a) and receiver
(b) singular modes are shown in Fig. 2, for three values of
r0 corresponding to the regimes of weak, moderate, and
strong intensity fluctuations (left to right). We note that
with increasing turbulence strength, the source modes
occupy smaller transverse areas. In addition, nontrivial
phases of both the source and receiver modes [encoded in
the color gradient in Figs. 2(a) and 2(b)] are another salient
feature—highlighting the relevance of constructive inter-
ference effects for effective transmission.
The right-hand panels of Fig. 2 show the distribution of

singular values (c) and its histogram (d) after ensemble
averaging over 500 atmospheric realizations. The black
dash-dot curve corresponds to weak intensity fluctuations
initially leveling for approximately 80 perfectly transmit-
ting singular modes associated with τ̄s ¼ 1 (the overline
designates the ensemble average). The performance of
further singular modes drops quickly toward vanishing
transmittance, i.e., τ̄s ¼ 0, where the wiggles in the curve
reflect residual degeneracy of singular values stemming

FIG. 1. Horizontal transmission channel of fixed length L
across a dynamically evolving, turbulent atmosphere. The
medium (confined between coaxial circular source and receiver
apertures of diameters Dsrc and Drec, respectively) is represented
by a collection of equidistant phase screens. The turbulence
strength governs their transverse structure, and their number
L=Δz is determined by requiring weak intensity fluctuations at
every propagation step. Temporal evolution is modeled by
individual shifting of phase screens according to wind velocities
vi (red arrows).
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from geometric symmetries in the absence of turbulence
[30]. This sharp separation between open (τ̄s ¼ 1) and
closed channels (τ̄s ¼ 0) corresponds to a bimodal distri-
bution [Fig. 2(d)] and agrees with the singular value
distribution observed in the absence of [38] or in weak
turbulence [34], as well as in other complex scattering
systems [5,39,40]. However, with increasing turbulence
strength the open channels evolve into partially trans-
mitting channels, i.e., τ̄s < 1 [3,4,41]. With increasing
turbulence strength the open-channel plateau shrinks (blue
dashed line in Fig. 2 for moderate intensity fluctuations)
and eventually turns into a monotonic decay (red solid line)
of the transmittance for strong intensity fluctuations. In the
latter regime, the resulting unimodal singular value dis-
tribution [Fig. 2(d)] is dominated by closed channels.
Notwithstanding, even in this case, we identify more than
ten modes with singular values τ̄s > 0.9.
Stability in dynamic turbulence.—Given the non-

negligible set of highly transmitting modes—even in strong
turbulence—we need to address their stability under the
atmosphere’s dynamical evolution. To account for the latter,
we adoptTaylor’s hypothesis [42],which states that the short-
time (t≲ 1 s) atmospheric evolution is describedby thewind-
induced transverse flow of static turbulent eddies [17].Within
the framework of our split-step approach, this behavior is
implemented by transverse shifts of individual phase screens
with respect to the propagation direction according to
appropriate velocity distributions V [24,43] (cf. Fig. 1).
Here, we assume normally distributed transverse winds with
mean hVi and variance ΔV2 which induce atmospheric
coherence times tc ¼ 6.88−3=5r0=hVi [1].
In general, the atmospheric propagation of highly trans-

mitting modes vsðρÞ associated with some initial realization

of turbulence at t ¼ 0 will yield some unknown field
fsðρ0; tÞ on the receiver’s end for t > 0. As seen from
Eq. (2), this field has to satisfy the initial condition
fsðρ0; 0Þ≡ ffiffiffiffi

τs
p

usðρ0Þ. Consequently, the mean transmitted

power is given by PsðtÞ ≔ jfsðρ0; tÞj2 with Psð0Þ ¼ τ̄s, and
a mode’s stability may be characterized by the way PsðtÞ
decays. Moreover, the evolution of the mean crosstalk
matrix, Cs0;sðtÞ ≔ jhfs0 ðρ0; tÞ; usðρ0Þij quantifies the dyna-
mically induced, undesired transfer of power from usðρ0Þ
into other output modes. We benchmark this stability
against the performance of optimized LG modes [44]
subject to ideal AO corrections [12]. This means all phase
errors attained by a propagated plane wave are subtracted
from the received LG modes.
The main panel of Fig. 3 compares the mean transmitted

power of the singular mode with the highest transmittance
(s ¼ 0; blue) to the AO corrected Gaussian (i.e., LG,
p ¼ l ¼ 0) mode (red) in the regime of strong intensity
fluctuations, i.e., σ2R ¼ 6.72. The transmitted power is
plotted as a function of time t in units of tc, which renders
the temporal dynamics of power transmittance and cross-
talk independent of the mean wind speed hVi. First, we
observe that the Gaussian mode (red line in Fig. 3), being
independent of the turbulent medium, transfers the same
power on average. In contrast, being optimized for the
initial realization of the turbulent medium, singular modes
transmit less and less power as the atmosphere evolves.

(a) (c)

(b) (d)

FIG. 2. Transverse profiles (phase is color coded, and intensity
is plotted as opacity) of instantaneous source (a) and receiver
(b) singular modes associated with the largest singular value τ0 of
a single realization of a turbulent medium with Fried parameters
r0 ¼ 130, 25, 15 mm, corresponding to Rytov variances
σ2R ¼ 0.18, 4.16, 6.72 (left to right) in our channel [31].
(c) Distributions of the average singular values τ̄s in decreasing
order, each obtained by averaging over 500 disorder realizations
(error bands give 1 standard deviation) with same parameters and
color code as in (a) and (b). (d) Corresponding histograms.

FIG. 3. Mean transmitted power (main panel) and crosstalk
matrices [45] (top and bottom rows) of highest-transmitting
(s ¼ 0) singular modes (blue, top) and optimized LG modes
(red, bottom) versus t=tc for strong intensity fluctuations
(σ2R ¼ 6.72, r0 ¼ 15 mm; same channel geometry as previously
[31]) with tc ¼ 1.57 ms [46] (error bands give 1 standard
deviation of 150 realizations). The singular modes’ power
transmittance was identified as an initial exponential decay
(orange) for t≲ tx saturating algebraically (black) for t > tx,
cf. Eq. (3) (here tx ≈ tc). Dashed horizontal lines (same color
coding) represent transmission through uncorrelated turbulence
coinciding with the independently found asymptotic limit of the
algebraic decay for singular modes.
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Nevertheless, it is evident from Fig. 3 that the singular
mode with the largest singular value τ0 outperforms the
power transmission of the Gaussian mode for sufficiently
short timescales t < tint ≃ 6tc, where tint denotes the time
when the transmitted powers of singular modes and LG
modes intersect.
We establish by careful fits that the singular modes’

transmitted power is governed by the following decay law:

Psðt=tcÞ ¼
�
τ̄s exp ½−ðast=tcÞ5=3� t≲ tx
bsðt=tcÞ−cs þ δ̄s t > tx;

ð3Þ

where the mean transmitted power at t ¼ 0 is given by
the averaged singular values τ̄s, while δ̄s represents the
asymptotic limit t → ∞, obtained by propagating the
singular modes through uncorrelated (rather than wind-
shifted, see Fig. 1) phase screens. The parameters as, bs,
and cs (for s ¼ 0;…; 10) are instead determined through
nonlinear fits for different turbulence strengths [25]. In
particular, as (bs and cs) are obtained by fitting the
numerical data for t < tx (t > tx), where the crossover
time tx is the inflection point of Psðt=tcÞ, which is inversely
proportional to the mean wind speed, determined by
the channel geometry and independent of the mode
number s [25].
The short-time decay in Eq. (3) is similar to the known

decay law ∼ exp½−ðt=tcÞ5=3� of the Strehl ratio [1], a
quantifier of imaging quality in optics [11,26]. Notably,
we find this initial decay to be universal: as ≃ 0.2 is
independent of the Fried parameter r0, of the mean trans-
verse wind speed hVi—due to rescaling with tc—and of the
mode number s. In other words, the initial rate of a mode’s
transmittance loss is solely determined by the static channel
geometry, while its duration tx is fixed by the mean
transverse wind speed hVi.
The subsequent algebraic decay of transmitted power for

t > tx is subdiffusive, i.e., decays slower than ∼1=
ffiffi
t

p
. For

the eleven highest-transmitting singular modes and various
turbulence strengths we find 0.32≲ cs ≲ 0.46 < 1=2 [25].
This slow decay may be attributed to long-range transverse
spatial correlations due to the Kolmogorov turbulence
power spectrum ∼κ−11=3 [17,20]: By means of Taylor’s
hypothesis Kolmogorov’s long-ranging spatial correlations
are translated into slowly decaying temporal correlations
inducing the slow subdiffusive decay of transmittance. To
corroborate this hypothesis, we consider light propagation
through a disordered medium with only short-range corre-
lations. Phase distortions in such a medium may be
described by a Gaussian power spectrum [22,47] for which
we observe a purely exponential decay of the singular
modes’ transmitted power [25].
The temporal stability of singular modes as compared to

optimized LG modes is further substantiated by the
evolution of their crosstalk matrices (top and bottom rows
in Fig. 3, respectively). The coupling among the eleven

highest-transmitting singular modes exhibits a prominent
diagonal structure for t ≤ tint, corresponding to negligible
crosstalk. Furthermore, this structure leaves fingerprints
even for longer times, while the considered LG modes
feature strong crosstalk at all times.
Finally, we assess the effect of intensity fluctuations

on the time interval tint over which singular modes per-
form better than LG modes. Figure 4 shows the extracted
intersection time tint=tc versus Rytov variance σ2R for the
two highest transmitting modes (s ¼ 0 in blue and s ¼ 1
in orange) for the same channel geometry as previously.
We observe that tint=tc is a nonlinear, monotonically
increasing function of the Rytov variance. Since all of
the considered eleven singular modes [25] performed
similarly well (cf. blue and orange curves for the two
highest-transmitting modes in the insets of Fig. 4) and the
transmittance of the LGmodes decreases quickly for higher
mode numbers (cf. red and green curves in the insets),
the growth rate of the intersection time tint=tc increases with
the mode number s. This is consistent with our above
discussion of the distinct crosstalk properties of singular
and LG modes (cf. Fig. 3). In particular, it emphasizes the
potential benefit of singular modes for multimode appli-
cations such as high-dimensional information encoding in
dynamical disordered media.
Conclusion.—The universality of our approach may

open new venues of future research in various directions.
For instance, the split-step method and the subsequent
decomposition of the transmission matrix may be applied
to any channel geometry and any turbulent medium,

FIG. 4. Rescaled average time interval tint=tc versus Rytov
variance during which the highest (s ¼ 0, blue dashed) and
second-highest (s ¼ 1, orange dotted) transmitting singular
modes transfer more power than respective LG modes (error
bars give 1 standard deviation of 150 realizations). The insets
sketch the average transmitted power of the two highest-
transmitting singular (s ¼ 0 blue, s ¼ 1 orange) and LG
(s ¼ 0 red, s ¼ 1 green) modes versus rescaled time (cf. Fig. 3)
with vertical lines indicating corresponding intersections.
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including non-Kolmogorov models or underwater chan-
nels. It would be particularly interesting to examine how
our main results are transferred to different dynamic
disordered media. Finally, recent experimental efforts have
been dedicated to the spatiotemporal characterization of
disorder in optical media; see, e.g., the measurement of a
time-gated transmission matrix in Ref. [48]. We expect that
combining these experimental advances with our theoreti-
cal tools could lead to new levels of control of light
transmission in time-dependent disordered optical media.
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