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We calculate the equation of state of asymmetric nuclear matter at finite temperature based on chiral
effective field theory interactions to next-to-next-to-next-to-leading order. Our results assess the theoretical
uncertainties from the many-body calculation and the chiral expansion. Using a Gaussian process emulator
for the free energy, we derive the thermodynamic properties of matter through consistent derivatives and
use the Gaussian process to access arbitrary proton fraction and temperature. This enables a first
nonparametric calculation of the equation of state in beta equilibrium, and of the speed of sound and the
symmetry energy at finite temperature. Moreover, our results show that the thermal part of the pressure
decreases with increasing densities.
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Introduction.—The nuclear equation of state (EOS)
plays a central role for the physics of nuclei and dense
matter in neutron stars, supernovae, and mergers [1–5].
While first principle calculations for a wide range of
densities, electron fractions, and temperatures are desirable,
practical calculations are limited by uncertainties of the
interactions in dense matter and the included degrees of
freedom. At nuclear densities n ∼ n0 (with saturation
density n0 ¼ 0.16 fm−3), neutrons and protons are the
relevant degrees of freedom and chiral effective field theory
(EFT) provides a systematic expansion of the strong
interactions among nucleons [6–8]. This has enabled first
principles studies of the EOS using various many-
body approaches and including theoretical uncertainty
estimates [9–26], where most calculations have focused
on pure neutron matter or symmetric nuclear matter. In
particular, the combination of chiral EFT results for neutron
matter and neutron star observations has led to important
constraints for the EOS in astrophysics and for the proper-
ties of neutron stars [27–38].
In this Letter, we calculate the EOS for arbitrary proton

fractions and temperatures based on chiral EFT interactions
to high order. We then construct a Gaussian process
emulator of the free energy that enables nonparametric
evaluations of the EOS and thermodynamic derivatives for

arbitrary nuclear conditions, including beta equilibrium, to
provide direct results for neutron star matter based on
chiral EFT.
Methods.—Our asymmetric nuclear matter calculations

are based on many-body perturbation theory (MBPT)
around a self-consistent Hartree-Fock (HF) state. The
framework for evaluating MBPT diagrams using Monte
Carlo integration is based on our previous works [22,26].
We start from the grand-canonical potential,

Ωðμn; μp; TÞ ¼ −T ln Trðe−ðH−μnnnV−μpnpVÞ=TÞ; ð1Þ

with temperature T, volume V, and μτ¼n;p are the neutron
and proton chemical potentials with corresponding den-
sities nτ. The Hamiltonian H ¼ H0 þ VNN þ V3N contains
a kinetic term together with nucleon-nucleon (NN) and
three-nucleon (3N) interactions constructed from chiral
EFT up to next-to-next-to-next-to-leading order (N3LO).
The MBPT series at finite T is organized following
Refs. [39,40] with the same choice of reference system
as in Ref. [26]. We include all contributions from NN and
3N interactions up to second order, and at third order all
interaction vertices that are NN or 3N with one line closing
on itself (corresponding to the normal-ordered two-body
approximation). This has been shown to be a very good
approximation at T ¼ 0 [22] and for neutron matter at finite
T [26]. For our main results, we employ the NN inter-
actions of Entem, Machleidt, and Nosyk (EMN) with cutoff
Λ ¼ 450 MeV [41] and 3N interactions fit to nuclear
saturation at N2LO (cD ¼ 2.25; cE ¼ 0.07) and N3LO
(cD ¼ 0; cE ¼ −1.32) [22]. We include NN partial waves
up to total angular momenta J12 ≤ 12, and 3N channels up
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to Jtot ≤ 9=2 and J12 ≤ 6 [42]. These truncations lead to
uncertainties that are small compared to the EFT uncer-
tainties for the considered densities.
The free energy density F=V is determined by

F
V
ðn; x; TÞ ¼ Ω

V
ðμn; μp; TÞ þ μnnnðμn; μp; TÞ

þ μpnpðμn; μp; TÞ; ð2Þ

where the densities are given by nτ ¼ −∂μτΩ=V, the total
density is n ¼ nn þ np, and x ¼ np=n is the proton
fraction. To obtain the free energy, Eq. (2), as a
function of density, we invert the relation between densities
and chemical potentials by generalizing the method from
Ref. [43] to multiple chemical potentials. In doing so,
we formally expand the chemical potentials around a
reference system with the same density and proton
fraction as the interacting system. This re-expansion is
necessary to obtain a perturbation series that is
consistent with the zero-temperature formalism, and
effectively deals with the anomalous diagrams at finite
T [26,43,44].
As the evaluation of MBPT diagrams involves the

computation of high-dimensional phase-space integrals,
the computation of the thermodynamic potential for a large
number of densities, temperatures and proton fractions is a
complex task. Hence, for the evaluation of the free energy
per particle and its derivatives, we construct an emulator for
Fðn; x; TÞ=A using three dimensional Gaussian process
(GP) regression [45]. Gaussian processes allow us to
interpolate the EOS in a way that does not spoil thermo-
dynamic consistency (e.g., second-order derivatives com-
mute) and to handle residual noise from the Monte Carlo
integration. We use the Python library of Ref. [46] and
employ the squared exponential kernel [45] with an overall

scale and three length scales as hyperparameters that are
determined by maximizing the likelihood. In constructing
the GP, we assume that each diagram has ΔEd ¼ 5 keV
noise from the Monte Carlo integration and the total

noise of every EOS point is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

d ΔE2
d

q

where the sum is over all diagrams. The resulting total
noise is much smaller than interaction uncertainties due to
the chiral EFT expansion and is not visible in the plots. We
treat the Fermi gas (FG) contribution analytically and
emulate the interaction energy per particle
Fint=A ¼ F=A − FFG=A. The GP emulator can be per-
formed in any set of variables. However, replacing n by
the Fermi momentum kF ¼ ð3π2n=2Þ1=3 was found to
simplify the evaluation of derivatives. Moreover, all input
variables are normalized to [0, 1] to prevent numerical
artifacts in the GP.
Free energy and GP emulation.—In Fig. 1 we present

results for F=A as a function of density for different
proton fractions and temperatures. We evaluate the
MBPT diagrams on the nonuniform grid with values
n ¼ 0.001; 0.01; 0.02;…; 0.05; 0.06; 0.08;…; 0.32 fm−3,
x ¼ 0; 0.1;…; 0.7, and T ¼ 0; 5; 10; 15; 20; 30 MeV. The
EOS points are marked with dots in Fig. 1, while the results
obtained from the GP emulator are shown as solid lines. An
excellent agreement is evident.
At low densities and finite T, we compare our results to

the model-independent virial EOS [47,48] in Fig. 1. Since
we consider homogeneous matter, we do not include the
contributions from alpha particles in the virial EOS (i.e., we
compare against Ref. [48] for nα ¼ 0) For n ≤ 0.025 fm−3

and low fugacities, we find excellent agreement with our
results. For higher densities, the inclusion of higher virial
coefficients and effects due to the effective nucleon mass
play an important role.

FIG. 1. Free energy per particle F=A at N3LO (Λ ¼ 450 MeV) for different proton fractions x ¼ 0, 0.1, 0.2, and 0.5 (panels from left
to right) and for temperatures T ¼ 0, 10, and 20MeV (blue, orange, and green) as a function of density n. Our MBPT results are given by
the dots, while the constructed GP emulator is shown with solid lines. The bands display theoretical EFT uncertainty estimates according
to Eq. (3). To show the MBPT convergence, results at the HF level (dashed) and at second order (dot-dashed) are given as well. At low
densities n ≤ 0.025 fm−3, we also compare to the virial EOS [47,48] (for T ¼ 20 MeV this corresponds to a neutron fugacity zn ≤ 0.45,
0.39, 0.34, 0.18 for x ¼ 0, 0.1, 0.2, 0.5).
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For estimates of the theoretical uncertainties for an
observable X due to the truncated chiral expansion we
use the prescription of Ref. [49],

ΔXðjÞ ¼ Q · max ðjXðjÞ − Xðj−1Þj;ΔXðj−1ÞÞ; ð3Þ

where XðjÞ is the observable calculated at NjLO and
the expansion parameter is Q ¼ p=Λb, where we take
Λb ¼ 500 MeV for the EFT breakdown scale and p is a
typical momentum for the observable of interest. We take p
to be the root-mean-square momentum of the Fermi gas

p2¼hk2i¼3T½Pτm
5=2
τ F3=2ðμτ=TÞ�=½

P
τm

3=2
τ F1=2ðμτ=TÞ�,

where the chemical potentials μτ are determined from the
density nτ ¼ 2−1=2ðmτT=πÞ3=2F1=2ðμτ=TÞ and FnðxÞ ¼
Γðnþ 1Þ−1 R∞

0 dttn½1þ expðt − xÞ�−1 are Fermi integrals.
The resulting EFT uncertainty bands at N3LO are shown
for the third-order MBPT results in Fig. 1. In addition, we
show the first-order (HF) and second-orderMBPT(2) results
to assess the MBPT convergence of the expansion. Table I
gives numerical values at fiducial n, x, T to document the
MBPTand chiral convergence. Overall, we find a systematic
MBPT convergence. For the first-order liquid-gas phase
transition in symmetric nuclear matter, our results give the
preliminary ranges for the critical temperature, density, and
pressure, Tc ¼ 15.9–16.3 MeV, nc ¼ 0.07–0.11 fm−3, and
Pc ¼ 0.30–0.40 MeV fm−3, where the ranges are obtained
by considering the N3LO interaction at MBPT(3) and
MBPT(2). A full analysis will be the topic of future work.
Pressure and thermal effects.—The pressure P ¼

n2∂nðF=AÞjx;T ¼ PFG þ n2∂nðFint=AÞjx;T is shown in
Fig. 2 for different proton fractions and temperatures,
where the derivative of the interaction energy Fint=A is
calculated using the GP emulator. As expected, the pressure
decreases with increasing proton fraction, and for very
neutron-rich conditions depends only weakly on the tem-
perature for n≳ n0. Interestingly, for symmetric matter we
find that the pressure decreases with increasing temperature
for n ≳ 0.2 fm−3. This negative thermal expansion has also
been observed in Ref. [16] for low-momentum interactions.
For neutron-rich matter, this behavior is seen in Fig. 2
starting at higher densities.
To investigate this further, we show the thermal pressure

Pth ¼ PðTÞ − PðT ¼ 0Þ in Fig. 3 for neutron matter and
symmetric matter for T ¼ 20 MeV. We find that the
thermal pressure starts to decrease at n ≈ 0.15 fm−3 and
becomes negative around n ≈ 0.2 fm−3. For neutron matter
this finding is consistent with Ref. [26] and can be
understood in terms of a neutron effective mass m�

n that
increases at higher density due to repulsive 3N contribu-
tions [23,26] [Pth ≤ 0 requires ∂m�

n=∂nn ≥ 0, see Eqs. (39)

TABLE I. MBPT convergence of the free energy per particle
F=A in MeV at N2LO and N3LO for different proton fractions x,
temperatures T in MeV, and densities n in fm−3. The EFT
uncertainties determined by Eq. (3) are given in parentheses for
the third-order MBPT results.

x ¼ 0.3 x ¼ 0.5

T n MBPT N2LO N3LO N2LO N3LO

0 0.1 HF −0.6 0.8 −3.1 −1.6
0 0.1 2 −8.7 −8.4 −12.4 −12.1
0 0.1 3 −8.9ð5Þ −8.8ð2Þ −12.9ð4Þ −12.7ð1Þ
0 0.16 HF 3.1 4.6 −0.1 1.4
0 0.16 2 −8.5 −8.3 −13.4 −13.1
0 0.16 3 −10.1ð11Þ −9.9ð5Þ −15.5ð9Þ −15.1ð4Þ
0 0.2 HF 7.9 9.1 4.5 5.5
0 0.2 2 −6.1 −6.1 −11.6 −11.5
0 0.2 3 −8.6ð27Þ −8.7ð13Þ −14.6ð24Þ −14.7ð10Þ
20 0.1 HF −23.4 −23.3 −26.3 −26.1
20 0.1 2 −33.6 −34.1 −37.7 −38.1
20 0.1 3 −33.3ð9Þ −33.4ð5Þ −37.6ð8Þ −37.5ð4Þ
20 0.16 HF −13.5 −13.7 −16.7 −17.1
20 0.16 2 −28.9 −29.9 −34.1 −35.1
20 0.16 3 −29.8ð11Þ −29.0ð6Þ −35.5ð7Þ −34.3ð7Þ
20 0.2 HF −6.4 −7.2 −9.7 −10.8
20 0.2 2 −25.7 −27.3 −31.5 −33.1
20 0.2 3 −27.7ð17Þ −26.7ð9Þ −34.2ð11Þ −32.7ð9Þ

FIG. 2. Same as Fig. 1 but for the pressure P at N3LO (Λ ¼ 450 MeV) from the GP emulator and with EFT uncertainties.
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and (41) in Ref. [26]]. Figure 3 shows that a decreasing
thermal pressure at higher densities is found at different
orders (N2LO and N3LO), different cutoffs (Λ ¼ 450 and
500 MeV), as well as for the 2.0=2.0 (EM) interaction [10],
while the size of the decrease has large theoretical uncer-
tainties. For the 2.0=2.0 (EM) interaction, we can also
compare our MBPT against self-consistent Green’s func-
tion (SCGF) results [23] and find good agreement (with the
small differences likely due to the T ¼ 0 extrapolation and
the normal-ordering approximation in Ref. [23]). Note that
the cutoff dependence of the negative thermal expansion
might indicate that the maximal density accessible is
limited based on the employed interactions.
Matter in beta equilibrium.—Using the GP, we can

access arbitrary proton fractions and derive other quantities
through thermodynamically consistent derivatives. We first
use the GP to calculate the proton fraction x of neutron
star matter in beta equilibrium as a function of density for
different temperatures. For a given density and tempera-
ture, x is determined by the condition mn þ μn ¼
mp þ μp þme þ μe, where the neutron and proton chemi-
cal potentials are given by μτ ¼ F=Aþ n∂nðF=AÞþ
ðδτ;p − xÞ∂xðF=AÞ. The electron chemical potential is
determined from the density of an ultrarelativistic Fermi
gas, ne ¼ 2=π2T3F2ðμe=TÞ with the Fermi integral F2

through charge neutrality np ¼ ne. Our results using the
GP emulator are shown in the upper panel of Fig. 4. We
find very narrow EFT uncertainty bands in this case, using
again Eq. (3) with Q ¼ Qðn; x ¼ xN

3LO
β-eq: ðn; TÞ; TÞ. At small

densities and finite T, the proton fraction is dominated by
the kinetic part and follows the virial EOS. At higher
densities, the density dependence of x is weaker, with
proton fractions of 4%–8% for the temperatures consid-
ered. Overall, we find a reasonable agreement with the
Lattimer and Swesty EOS LS220 [50] but our chiral EFT
results exhibit a weaker density dependence.
TheGP thus also enables a first nonparametric calculation

of the neutron star EOS. In the lower panel of Fig. 4 we show
the pressure of matter in beta equilibriumPðn; xβ-eq:; T ¼ 0Þ
at N2LO and N3LO with EFT uncertainty estimates. The
N3LO band is systematically smaller and overlaps with
the N2LO band over the full density range. Moreover, both
bands behave naturally towards higher densities and hence
show no indication for a breakdown of the chiral expansion
up ton ≲ 0.25 fm−3. For comparison,we also show the EOS
band from Hebeler et al. [27] based on chiral EFT inter-
actions up to 1.1n0 and a general piecewise polytrope
extension to higher densities constrained by causality and
the observation of two-solar-mass neutron stars. This EOS
band results mainly from variations of the chiral 3N forces,
so that the comparison is not direct. Nevertheless, the
overlap with the nonparametric N2LO and N3LO bands is
remarkable. Up to n0, the N3LO band prefers high pressures

FIG. 3. Thermal pressure Pth for neutron matter (blue) and
symmetric matter (red) for T ¼ 20 MeV as a function of density.
In addition to the N3LO results with Λ ¼ 450 MeV (solid lines)
we also show Λ ¼ 500 MeV (dot-dashed lines) as well as for the
2.0=2.0 (EM) interaction [10] (dashed lines). For the latter, we
compare against the SCGF results from Ref. [23] (dotted lines).
The darker EFT uncertainty bands are N3LO, while the lighter
ones are for N2LO. FIG. 4. Upper panel: Proton fraction x in beta equilibrium at

N3LO for different T as a function of density. For comparison, we
show the virial EOS and the LS220 EOS [50]. Lower panel:
Pressure P in beta equilibrium for T ¼ 0 at N2LO and N3LO. We
compare against the EOS band from Hebeler et al. [27] based on
chiral EFT interactions up to 1.1n0 and a general piecewise
polytrope extension to higher densities.
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in the Hebeler et al. band [27] and at higher n, it provides
important new constraints.
Speed of sound and symmetry energy.—Next, we study

the speed of sound c2s ¼ ∂P=∂εjS;x ¼ ðn=Pþ εÞ∂P=∂njS;x
with the internal energy density ε ¼ nðE=AþmnÞ. The
derivative at constant entropy S and constant proton
fraction x is performed numerically based on
P½n; x; Tðn; x; SÞ�. Our results using the GP emulator are
shown for neutron matter in the upper panel of Fig. 5.
Given that c2s is a second derivative, the EFT uncertainties
are larger in this case. At T ¼ 0, c2s increases monotonously
while the increase is weaker at finite T. As for the pressure,
c2s decreases at higher densities with increasing T.
As another GP application, we show the symmetry free

energy per particle Fsym=A as a function of density for
different T in the lower panel of Fig. 5. We compare two
common definitions: the second derivative around sym-
metric matter and the difference between neutron matter
and symmetric matter, where the difference probes the
size of contributions beyond a quadratic x dependence.
Since the numerical uncertainties are enhanced in second
derivatives due to residual noise from the Monte Carlo
integration, we calculate ∂2ðF=AÞ=∂x2jx¼1=2 by fitting a GP
to each MBPT diagram individually. The difference def-
inition is more sensitive to thermal effects due to the
nonquadratic contributions contained in the kinetic part.

For the second-derivative definition, we find that Fsym=A is
narrowly predicted at N3LO at a fixed saturation density n0,
with Fsymðn0Þ=A ≈ 30 MeV at T ¼ 0, while the uncer-
tainty increases if one allows this reference density to vary
[51]. Moreover, the T dependence of the symmetry energy
is mild at n0, with larger increases at lower and higher n.
Conclusions and outlook.—We presented first micro-

scopic calculations of the EOS at arbitrary proton fractions
and finite temperature based on chiral NN and 3N inter-
actions to N3LO, including uncertainty estimates from the
many-body calculation and the chiral expansion. For this an
emulator of the interaction free energy per particle was
constructed using Gaussian processes. We demonstrated
that this enables an efficient and accurate evaluation of the
EOS and thermodynamic derivatives for arbitrary values of
n, x, and T, where we considered the ranges n ≤ 0.25 fm−3,
x ≤ 0.5, and T ≤ 20 MeV. The EFT uncertainties dominate
over the MBPT uncertainties for these nuclear densities.
We studied in detail the dependence of the free energy and

the pressure on proton fraction and temperature, and found
that the pressure at higher densities decreases with increas-
ing temperature, thus exhibiting a negative thermal expan-
sion. The GP emulator allowed us to calculate the EOS in
beta equilibrium directly without parametrizations between
neutron and symmetric matter. The resulting N3LO neutron
star EOS exhibited a systematic chiral EFTbehavior over the
full range (n ≤ 0.25 fm−3) and significantly improved the
uncertainties over previous EOS bands, preferring larger
values for the pressure. Moreover, we presented first micro-
scopic results for the speed of sound and the symmetry
energy at finite temperature. Our framework and results test
commonly applied approximation for the proton fraction
and temperature dependence of the EOS and open the door
to nonparametric EOS input for astrophysical simulations of
supernovae and mergers.
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