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An absolute measurement of the A7 lifetime is reported using A7 — pK~z" decays in events
reconstructed from data collected by the Belle II experiment at the SuperKEKB asymmetric-
energy electron-positron collider. The total integrated luminosity of the data sample, which was

collected at center-of-mass energies at or near the Y(4S) resonance, is 207.2 fb~!. The result,
7(Af) =203.20 + 0.89 + 0.77 fs, where the first uncertainty is statistical and the second systematic,
is the most precise measurement to date and is consistent with previous determinations.

DOI: 10.1103/PhysRevLett.130.071802

Searches for physics beyond the standard model of
particle physics through precise measurements of weakly
decaying charm or bottom hadrons often rely on accurate
theoretical descriptions of strong interactions at low energy,
typically using effective models such as the heavy quark
expansion (HQE) [1-7]. The HQE provides a consistent
framework for computing the decay widths of heavy hadrons
in terms of inverse powers of the heavy quark mass. For
bottom hadrons, nonperturbative effects are relatively small,
and the HQE in 1/m,, where m, is the mass of the bottom
quark, works well. In contrast, higher-order corrections due
to the influence of light valence (spectator) quarks are
significant for charm hadron lifetimes, for which the HQE
to 1/m? does not satisfactorily describe lifetimes [7]. The
lifetimes of the Q0 and =¥ were recently measured to be
much larger than the previous world average [8-10],
inverting the known hierarchy of charm lifetimes. Careful
consideration of model-dependent spectator effects is
required for theoretical predictions of charm baryon lifetimes
to agree with experimental measurements [6,7]. Improved
measurements of charm baryon lifetimes therefore provide
refined tests for effective models.

The world average value of the A lifetime is 202.4 +
3.1 fs [11]. Previous measurements include percent-level
results from the FOCUS, SELEX, and CLEO collabora-
tions two decades ago [12—14], as well as a more precise
measurement, relative to the DT lifetime, from the LHCb
collaboration [9]. The latter of these has a limiting
systematic uncertainty associated with the D™ lifetime.
Relative measurements minimize systematic uncertainties
related to event selection that may bias the decay time,
particularly at hadron colliders. In contrast, the ability to
reconstruct charm hadrons without biasing the decay time
allows experiments at electron-positron (e*e™) colliders to
precisely determine absolute lifetimes, as demonstrated by
the recent measurement of the D® and D™ lifetimes [15]
from the Belle II experiment [16] at the SuperKEKB
asymmetric-energy e™e~ collider [17]. The most recent
A lifetime measurement at an eTe~ collider, from the
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CLEO collaboration, is in mild tension with other results
and increases the uncertainty of the world average [11]. A
precise, absolute measurement by Belle II may help to
resolve the tension between A7 lifetime measurements at
et e colliders and other experiments and will substantially
improve the world average.

In this Letter, we report a precise measurement of the A"
lifetime using A — pK~zt decays reconstructed in data
collected at or near the Y (4S) resonance, corresponding
to a center-of-mass energy at or near 10.58 GeV, by the
Belle II experiment from 2019 to mid 2021 and corre-
sponding to an integrated luminosity of 207.2 fb~!. Unless
specified otherwise, charge conjugate decays are implied
throughout.

The lifetime of the A/ is determined from a two-
dimensional fit to the decay time ¢ and its uncertainty o,.
The decay time is calculated assuming that A} candidates
are promptly produced from continuum e™e~ — ¢¢ events

2 where

and is determined according to t = m ACZ -p/|p

m,, is the world average mass of the A [11], L is the
displacement of the A decay point from the e'e™
interaction point (IP), and p is the momentum of the A}
candidate. The position and size of the IP region is
determined using eTe~™ — uTpu~ events. Event selection
criteria and the fit strategy are optimized and validated
using simulated data, but the fit to the collision data does
not use any input taken from simulation.

The Belle II detector [16] includes a tracking system
comprising a two-layer silicon pixel detector (PXD) sur-
rounded by a four-layer double-sided silicon strip detector
(SVD) and a 56-layer central drift chamber (CDC). The
second layer of the PXD had 15% azimuthal coverage
during the collection of the data used in this study. For the
A/ decays considered here, the combined PXD and SVD
vertexing system provide a decay-length resolution of
40 pm, corresponding to an average decay-time resolution
of 87 fs for an average decay length of 96 pm. A time-of-
propagation counter in the barrel region of the detector
and an aerogel ring-imaging Cherenkov counter in the
endcap region provide charged-particle identification (PID)
information. An electromagnetic calorimeter consisting of
CsI(TI) crystals provides energy and timing measurements
for photons and electrons. A K? and muon detector is
installed in the iron flux return yoke of a superconducting
solenoid magnet that provides a 1.5 T magnetic field.
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We generate eTe™ — gg events with KKMC [18] and
hadronize quarks with Pythia 8 [19]. Hadron decays are
emulated using EvtGen [20]. The detector response is
simulated with Geant4 [21]. Reconstruction of events from
simulated and collision data is performed with the Belle II
analysis software framework [22]. In addition to the
excellent vertexing capability, Belle II benefits from good
charged-particle tracking performance [23,24].

Candidate A} — pK~z" decays are each reconstructed
from one negatively and two positively charged particles,
which are required to be well measured with reliable
uncertainties to allow for a precise lifetime measurement.
Each charged particle must be associated with one or more
PXD measurements (hits) in the PXD, at least one hit in the
first layer of the SVD, and at least 20 hits in the CDC. Each
charged particle must have a distance of closest approach to
the IP of less than 0.5 cm in the plane transverse to the
beam and 2 cm in the direction parallel to it to remove
charged particles not associated with the e*e™ interaction.
A fit constrains the charged particles to come from a
common vertex and the A candidate to come from the TP
[25]. Candidates with a vertex-fit y> probability less than
0.01 are rejected. Since the A is assumed to originate from
the IP, secondary decays in which the A} originates from a
displaced vertex would bias the lifetime measurement.
To suppress Al from B decays, the center-of-mass momen-
tum of each Al candidate is required to be greater
than 2.5 GeV/c.

Charged PID information is combined from all subde-
tector systems except the PXD and SVD. This PID
information is used to construct likelihoods L(h) for a
given particle hypothesis /h. For each candidate, one
positively charged particle is required to have
L(p)/IL(p)+L(K)+L(x)]>0.9, the negatively charged
particle is required to have L(K)/[L(p) + L(K) + L(x)+
L(u) + L(e) + L(d)] > 0.6, and the remaining positively
charged particle is assumed to be a pion. Here £(d) is the
deuteron hypothesis likelihood. The efficiency of the
proton identification is found to be about 88%, with a
kaon contamination of less than 2%, and the efficiency of
kaon identification is 70%, with a pion contamination of
6%, from studies of A’ — pz~ and D*-tagged D° —
K=" decays. To reduce backgrounds from misidentified
charm-meson decays, we reject events with M(z*K~z") in
[1.858,1.881] GeV/c?> or [2.000,2.020] GeV/c?, with
both positively charged particles assumed to be pions.
These intervals correspond to three units of resolution, or
standard deviations, on the reconstructed mass in both
directions around the known Dt and D** masses, respec-
tively. Other charm-related backgrounds are suppressed by
requiring that the transverse momenta of pions exceed
0.35 GeV/c and those of protons exceed 0.7 GeV/c.

Events with multiple candidates, which occur at a rate of
0.2%, are rejected. Analysis of simulated events shows that

the event selection criteria do not bias the measurement of
the A lifetime.

Decays of 52 — z~A} and Ef — 7°A} may bias the
measurement of the A lifetime, since the Z0 and =} have
lifetimes of 153 &6 fs and 456 £ 5 fs [11], respectively,
and may shift the production vertex of the Al away from
the IP. The amount of E. contamination is estimated from a
fit to the distribution of the Al vertex displacement from
the IP in the plane transverse to the beam line. This
distribution depends only on the resolution of the detector
for A} candidates that are produced at the IP. A}
candidates from Z. decays have production vertices that
are displaced from the IP and therefore a larger vertex
displacement from the IP. The fit to the distribution of the
Al transverse vertex displacement gives a background
contamination of 374 £88 events, corresponding to
0.003% of A} candidates. As this includes both combina-
toric backgrounds and E. decays, the central value is taken
as an estimate of the maximum number of Z. decays. This
value is consistent with predictions based on the expected
production cross-sections for 20 and E} [26], the measured
branching fraction for 22 — z~A} [27], and theoretical
predictions for ZF — 7°AF [28]. Backgrounds from =,
decays are reduced by restricting the invariant mass of the
=, candidate formed by combining the A candidate with a
7~ or 7¥ from the unassigned particle candidates of the
event. This restriction is optimized using simulations, and
the optimal precision on the lifetime measurement is
achieved by restricting the mass difference between the
E. and A} candidates to two units of the mass resolution,
removing events with M(pK n"z")—M(pK z") in
[0.1834,0.1864] GeV/c?* or M(pK~ntz°) — M(pK~z™")
in [0.1753,0.1873] GeV/c?. About 61% of E. decays to
A, survive this veto, according to studies of simulated
events. To account for the effect of the remaining back-
ground of this type, the measured A/ lifetime is corrected
by subtracting a bias of 0.34 fs, as discussed below.

After all selection criteria, the number of events in
the A signal range, defined as M(pK z") in
[2.283,2.290] GeV/c?, within about 1.4 units of the mass
resolution around the world average Al mass, is
1.16 x 10°. The relative amount of signal events, deter-
mined from a binned least-squares fit to the M(pK ™)
distribution (Fig. 1), is 92.5%. In the fit, the A] - pK~z™
signal is modeled as the sum of Gaussian and Johnson
functions [29] with a common mode. The background is
modeled as a linear function. Events from the Al side-
bands, defined as M(pK-z") in [2.249,2.264] GeV/c?
and [2.309,2.324] GeV/c?, are used to constrain the
background in the lifetime fit.

The A/ lifetime is measured with an unbinned maxi-
mum-likelihood fit to the (, 5,) distribution for events in
the signal region. The signal probability density function
(PDF) is the product of an exponential function in ¢
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FIG. 1. Mass distribution of A7 — pK~z" candidates with fit

projections overlaid. The vertical dashed lines enclose the signal
region, and the short, vertical dotted lines enclose the sidebands.

convolved with a Gaussian resolution function, which
depends on o,, and a PDF for o,. The latter is a histogram
template formed from signal candidates subtracted by the
distribution of sideband candidates after scaling according
to the size of the signal and background regions. To account
for a possible bias in the decay-time determination, the
mean of the resolution function is determined by the fit.

The background PDF, an empirical model of the side-
band data, is the sum of two exponential functions con-
volved with Gaussian resolution functions, which account
for backgrounds from long-lived particles, and a zero-
lifetime component consisting only of the resolution
function, which accounts for combinatorial backgrounds.
To account for a possible misestimation of the decay-time
uncertainty, the width of the resolution function is given
by the per-candidate o, multiplied by a scale factor s, which
is a free parameter in the lifetime fit. The mean of the
resolution function is common for all terms, but a separate
o, -scaling parameter is used for the background PDF.

To better constrain the background, a simultaneous fit to
the events in the signal region and sidebands is performed,
where the o, PDF for the sidebands is a binned template
determined by sideband events. The background fraction in
the lifetime fit is Gaussian constrained to (7.50 + 0.02)%,
as determined from the M(pK~z") fit.

The lifetime fit is validated both on fully simulated
data equivalent to 1 ab~!, about five times the integrated
luminosity of the collision data, and on simulated distri-
butions generated by randomly sampling the lifetime PDF
determined from a fit to the collision data. All validation fits
return unbiased results, regardless of the assumed A
lifetime. Studies of the decay-time distribution in simu-
lation suggest that o, is underestimated by about 10%,
which is in good agreement with the results from the
lifetime fit to the data, for which the scale parameter is
determined to be s = 1.108 £ 0.006. The mean of the
resolution function is determined to be 4.77 + 0.63 fs.

Belle 11

—

g _ B ]
w | 3 / Ldt=2072fb §
g , ¢ Data 1
10° ¢ p E
g — Total fit E
10 - Background 3

Candidates per 70 fs
)

_ _ ._.
=S B3 <

T T T
-*-.-_’_._‘__.

! ! !

t [ps]

FIG. 2. Decay-time distribution of A} — pK~z" events in the
signal region (top) and sidebands (bottom) with fit projections
overlaid.

The A/ lifetime is measured to be 203.20 + 0.89 fs,
where the uncertainty is statistical only. The lifetime fit
projection, overlaid on the decay-time distribution in the
data sample, is shown in Fig. 2. The o, PDF used in the
lifetime fit is shown in Fig. 3. The systematic uncertainty is
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FIG. 3. Decay-time uncertainty distribution of Aj — pK~z*
events in the signal region (top) and sidebands (bottom). The o,
PDF used in the fit is shown by the solid blue histogram, and the
background o, PDF is shown by the dashed red histogram.
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TABLE I. Systematic uncertainties on the A, lifetime.
Source Uncertainty (fs)
. contamination 0.34
Resolution model 0.46
Non-E,. backgrounds 0.20
Detector alignment 0.46
Momentum scale 0.09
Total 0.77

calculated from the sum in quadrature of individual
contributions from the sources listed in Table I and
described below.

The systematic uncertainty due to backgrounds from =,
decays is determined by adding simulated events of this
type to the 1 ab~! equivalent simulated sample according to
the estimated maximum contamination determined from
the fit to the distribution of the A} transverse vertex
displacement in data and repeating the measurement.
The difference between the simulated A} lifetime and
the measured value is 0.68 fs. Since this is an estimate of
the maximum effect of remaining E. backgrounds, half the
difference, 0.34 fs, is taken as both a correction to the
lifetime and an associated systematic uncertainty.

The resolution model for the lifetime PDF is complicated
by correlations between the decay time and the decay-time
uncertainty such that it cannot be described by a simple
Gaussian function. We neglect these correlations in our
model, which consists of a ¢, -dependent Gaussian reso-
lution multiplied by a PDF in o,, and include the impact of
this approximation as a systematic uncertainty. We fit our
model to 1000 sets of signal-only simulated decays, each
with a size equivalent to the data. The sets are produced by
resampling, with repetition, simulated events in an amount
corresponding to an equivalent luminosity of 1 ab=!. The
difference in the mean lifetime determined from these fits
relative to the true value is 0.46 fs, which is taken as a
systematic uncertainty due to the resolution model.

To check the resolution model, the lifetime fit is repeated
with the Gaussian resolution function replaced with a sum
of two Gaussian functions. The difference in the measured
lifetime, 0.36 £ 0.23 fs, is covered by the corresponding
systematic uncertainty. The bias of the decay-time reso-
lution function for signal events depends on the Af
candidate mass, but cancels if the signal range is centered
on the true mass. Differences in the measured lifetime with
the signal region varied are consistent with statistical
fluctuations and are within the systematic uncertainty
due to the resolution model.

Sideband events are included in the lifetime fit to
constrain the background PDF. In simulation, sideband
events describe the background distribution in the signal
region accurately. To account for potential disagreements
between the signal region and sidebands in the data, we

produce 1000 sets of simulated data by resampling from the
1 ab~'-equivalent simulated sample for events in the signal
region and from the sidebands of the data sample for events
in the sideband region. The mean lifetime residual is
0.20 fs, which is taken as a systematic uncertainty asso-
ciated with background contamination.

To check the signal PDF for the M (p K~z ") fit, we replace
the sum of Gaussian and Johnson functions with a sum of two
Gaussian functions. Using the resulting background contri-
bution has a negligible effect on the measured lifetime.

Reconstruction of charged particles at Belle II relies on
periodic calibrations to correct for detector misalignment
and surface deformations of the internal components of
the PXD and SVD, as well as for relative alignments of the
tracking system [30]. Detector misalignment can bias
measured particle-decay lengths and therefore their decay
times. To account for imperfections in the detector align-
ment, sets of signal-only simulated data, each with a size
comparable to the collision data, are produced with
detectors randomly misaligned according to the alignment
precision observed in data. The root mean square
dispersion of the lifetime residuals in these misaligned
simulated datasets is 0.46 fs, which is taken as a systematic
uncertainty due to imperfect detector alignment.

The momenta of charged particles are scaled by a factor,
0.99971, determined by calibrating the peak positions of
abundant charm, strange, and bottom hadron decays. The
uncertainty on this scale factor, 0.0009, results in a
systematic uncertainty on the A/ lifetime of 0.09 fs.
The uncertainty on the world average of the A mass
results in a negligible systematic uncertainty.

As a check of the internal consistency of the lifetime
measurement, the full analysis is repeated on subsets of data
chosen according to data-collection periods and A}f momen-
tum ranges, directions, and charge. The result for each subset
is consistent with the full result. The lifetime fit is also
repeated by selecting the candidate with the best vertex fit
probability or randomly selecting a candidate, rather than
rejecting events with multiple candidates. The difference in
lifetime in each case is negligible. Finally, several events in
the data have lifetimes greater than 4 ps, as shown in Fig. 2.
Studies of simulated events suggest that these are from long-
lived charm meson decays and show that they do not bias the
lifetime result with the current dataset size.

In conclusion, we measure the Al lifetime to be
203.20 £ 0.89 £ 0.77 fs where the first uncertainty is
statistical and the second systematic, using data with an
integrated luminosity of 207.2 fb~! collected by the Belle II
experiment at the SuperKEKB asymmetric-energy e'e™
collider. This is consistent with the recent, relative meas-
urement by LHCD [9] and other previous results, though the
mild tension between the measurement by CLEO [14] and
all other measurements remains. The absolute measurement
presented here is the most precise A/ lifetime measurement
to date and may be useful to test the accuracy of HQE
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models as theoretical precision improves and discrepancies
between theory and experiment become more significant.
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