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We study coupled unitary Virasoro minimal models in the large rank (m → ∞) limit. In large m
perturbation theory, we find two nontrivial IR fixed points which exhibit irrational coefficients in several
anomalous dimensions and the central charge. For N > 4 copies, we show that the IR theory breaks all
possible currents that would otherwise enhance the Virasoro algebra, up to spin 10. This provides strong
evidence that the IR fixed points are examples of compact, unitary, irrational conformal field theories with
the minimal amount of chiral symmetry. We also analyze anomalous dimension matrices for a family of
degenerate operators with increasing spin. These display further evidence of irrationality and begin to
reveal the form of the leading quantum Regge trajectory.
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Introduction.—The perturbative renormalization group
(RG) is a robust tool for demystifying the space of
conformal field theories (CFTs) by showing how one fixed
point may be reached by deforming another. In recent years
[1–6], hundreds of new CFTs have been shown to arise
from a common starting point: a tensor product of N copies
of the massless free scalar. In this Letter, we explore the
analogous situation in which the tensor product is applied
to a different type of exactly solved theory: a unitary
Virasoro minimal model.
It is typically hard to make sharp statements about RG

flows emanating from minimal interacting CFTs in the
ultraviolet (UV). To mention a widely studied example, N
Ising models coupled as in

S ¼
XN
i¼1

SiIsing þ g
Z

ddx
X
i<j

ϵiϵj ð1Þ

can be driven to a nontrivial infrared (IR) fixed point in
d ¼ 3. This is the critical Oð2Þ model for N ¼ 2 and the
hypercubic fixed point (having ZN

2 ⋊SN symmetry) for
N > 2. Although the cubic fixed point has been studied
in the 4 − d expansion since Ref. [7], a crucial question
about it—whether it is preferred in nature over the Oð3Þ
universality class—could not be answered until a

large-scale numerical bootstrap study [8] was finally
completed [9]. The problem, of course, is that the scaling
dimension of ϵiϵj differs from 3 by a finite amount which
makes the flow uncontrolled.
A setup similar to Eq. (1), based on the q-state

Potts model in two dimensions instead of the Ising model
in d dimensions, faces the same problem. The q − 2
expansion of

S ¼
XN
i¼1

Siq−Potts þ g
Z

d2x
X
i<j

ϵiϵj ð2Þ

used in Ref. [11] is uncontrolled, because ϵiϵj has dimen-
sion Δ ¼ 8

5
< 2 in the most interesting case of q ¼ 3 [12].

This means the maximal chiral algebra realized by Eq. (2)
in the IR along with the number of primary operators in its
spectrum are both unknown.
CFTs with a finite number of primary operators are

called rational. This is because a modular invariant
partition function can be written as a finite bilinear
combination of characters only if the central charge and
all conformal weights are rational numbers [14]. A con-
dition weaker than rationality is compactness defined as
discreteness of the spectrum. The literature is replete with
long lists of rational CFTs [15,16]. The amount of attention
paid to compact irrational CFTs pales in comparison to the
point where essentially all known unitary examples can be
described in three lines: (1) the compact free boson with a
generic radius, (2) Calabi-Yau sigma models with generic
moduli, and (3) spinning top CFTs [17] with finite fusion
rules. All of these theories have enhanced chiral symmetry.
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Said another way, there are Virasoro primaries at infinitely
many spins l such that the twist τ≡ Δ − l vanishes.
For analytic bootstrap methods which apply to CFTs in

d > 2, the presence of a twist gap is indispensable [18,19].
Corrections to a theory’s universal behavior at large spin
may be computed systematically, because the contribution
of a given operator to a four-point function in the light-cone
limit decays with twist. Virasoro symmetry is already
enough to kill a naive application of this method in
d ¼ 2, but Refs. [20,21] found a suitable improvement.
Their insight was to reorganize a more modern version of
the analytic bootstrap [22,23] in terms of Virasoro pri-
maries using the crossing kernel found in Refs. [24,25].
This Letter aims to describe an RG flow which ends on a
CFT, satisfying the assumptions of the Virasoro analytic
bootstrap.
This will be accomplished by regarding minimal models

as distinguished points on a continuous line. In contrast to
Eq. (2), which was strongly coupled at q ¼ 3 and nonuni-
tary otherwise, our flows will become unitary and weakly
coupled at the same time as we take the central charge
c → 1. Analytic continuation in c has previously been used
as a tool for interpreting numerical bootstrap results
[26,27]. Before this, it was implicitly used in perturbative
studies of the integrable flows connecting minimal models
[28,29]. Applications of this strategy to coupled systems
are scarce [30]. In the only example we are aware of, the
authors of Ref. [32] found perturbative flows by coupling
minimal models of dn-type W algebras [33]. Some evi-
dence was found for irrationality but not for the presence or
absence of enhanced chiral symmetry. The techniques
developed here for the Virasoro case appear well poised
for answering this question in the future.
The model.—We start from N rank m unitary Virasoro

minimal models with central charge c ¼ 1–6=½mðmþ 1Þ�
each. Having in mind the large m regime, where perturba-
tion theory is well defined and where an infinite number of
unitary theories accumulate, the holomorphic dimension of
a primary labeled by r; s ∈ N is

hðr;sÞ ¼
ðr − sÞ2

4
þ r2 − s2

4m
þOðm−2Þ: ð3Þ

To find relevant operators, we can take only pairs of the
type ðr; rþ 1Þ and ðr; rþ 2Þ. In the first case, we need to
multiply four copies for near marginality, but in the second
case one copy suffices. This is an infinite set of deforma-
tions, but fortunately there is a finite subsector. By taking
r ¼ 1, repeated operator product expansions (OPEs) will
produce only ð1; sÞ, meaning we can truncate to products of
four (1,2) operators and a single (1,3). The natural choice to
preserve the SN symmetry permuting the copies leads us
then to the formal action

SCMM ¼
XN
i¼1

Sim þ gϵ

Z
d2xN−1=2

XN
i¼1

ϕi
ð1;3Þ

þ gσ

Z
d2x

�
N

4

�−1=2 XN
i<j<k<l

ϕi
ð1;2Þϕ

j
ð1;2Þϕ

k
ð1;2Þϕ

l
ð1;2Þ:

ð4Þ

The first line describes N copies of the famous flow from
Refs. [28,29], while the second is more interesting. For
convenience, we will henceforth denote these deformations
by ϵ and σ, respectively. Subsequent analysis will use large
m limits of the OPE coefficients from Refs. [35,36]:

Cð1;3Þ
ð1;2Þð1;2Þ ¼

ffiffiffi
3

p

2
; Cð1;3Þ

ð1;3Þð1;3Þ ¼
4ffiffiffi
3

p : ð5Þ

To address the global symmetry G of this model, two
viewpoints are possible. If Sim in Eq. (4) represents only the
closed subsector of ð1; sÞ operators, there is a Z2 symmetry
sending ϕi

ð1;2Þ ↦ −ϕi
ð1;2Þ for all m but no modular invari-

ance. In this case, G is the diagonal Z2 × SN for N > 4 and
Z3

2⋊S4 for N ¼ 4. If Sim is instead the modular invariant
theory (which exists only for integerm), the appropriate Z2

symmetry sends ϕi
ð1;2Þ ↦ ð−1Þmϕi

ð1;2Þ [37] so that G is

hypercubic for even m [38].
Renormalization group.—It is straightforward to analyze

the IR fixed points using conformal perturbation theory
[40]. For the deformation

R
d2xgIOI , classic one-loop

results (with the summation convention) are [41,42]

βI ¼ 2g̃I − πCI
JKg

JgK;

Δc ¼ −2π2N IJgJð3g̃I − πCI
KLg

KgLÞ; ð6Þ

where g̃I ≡ ð1 − hIÞgI and N IJ ≡ hOIð0ÞOJð∞Þi.
Combining Eqs. (5) and (6) with combinatorial gymnastics
yields

βσ ¼
6

m
gσ −

4π
ffiffiffi
3

pffiffiffiffi
N

p gσgϵ − 6π

�
N − 4

2

��
N

4

�−1=2
g2σ;

βϵ ¼
4

m
gϵ −

4πffiffiffiffiffiffiffi
3N

p g2ϵ −
2π

ffiffiffi
3

pffiffiffiffi
N

p g2σ ð7Þ

 

FIG. 1. Schematic flow diagram linking the fixed points.
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to leading order in 1=m [43]. The beta functions have four
roots. Along with the UV fixed point fg�ϵ ¼ 0; g�σ ¼ 0g and
the N decoupled rank m − 1 models fg�ϵ ¼ ð2 ffiffiffi

3
p

=mπÞ;
g�σ ¼ 0g, there are two fully coupled fixed points FP�

�
with

g�σ� ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN−3Þ4

p
πm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2PðNÞp ; g�ϵ� ¼∓QðNÞþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3PðNÞp
2πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðNÞ=Np ; ð8Þ

where PðNÞ¼3N4−53N3þ357N2−1069Nþ1194 and
QðNÞ ¼ 3N2 − 27N þ 60. One can then also extract the
IR dimensions of the deforming operators by diagonalizing
the matrix ∂βI=∂gJ, finding the linear combinations which
are dilation eigenstates in the process. The result is a rather
cumbersome formula for general N, but the lowest-lying
examples are Δ ¼ 2� ð2 ffiffiffi

6
p

=mÞ in both fixed points with
N ¼ 4, 5. These become Δ¼2− ½ð ffiffiffi

6
p � ffiffiffiffiffiffiffiffi

870
p Þ=6m� for

FP�þ and Δ ¼ 2þ ½ð ffiffiffi
6

p � ffiffiffiffiffiffiffiffi
870

p Þ=6m� for FP�
− when

N ¼ 6. In fact, one always gets a relevant and an irrelevant
operator in the IR, so these are tricritical fixed points as
shown in Fig. 1. Furthermore, for general N, one always
finds irrational numbers multiplying 1=m, which is a mild
hint of irrationality [44]. Indeed, if the IR CFTs were
rational for every large integer m, with rational scaling
dimensions, a natural possibility would be for the dimen-
sions to admit an expression as a rational function of m.
The large m expansion of such a function would have
rational coefficients as well.
From the second line in Eq. (6),

Δc�� ¼ −
2N
m3

ffiffiffi
3

p
QðNÞ ∓ 3

ffiffiffiffiffiffiffiffiffiffiffi
PðNÞpffiffiffiffiffiffiffiffiffiffiffi

PðNÞp : ð9Þ

These shifts are rational and the same for both fixed points
in the cases N ¼ 4, 5 but are irrational and different for
N⩾6, showing the same type of hint.
Lifting of currents.—Before the interaction is turned on,

the chiral symmetry of N minimal models is VirN with
each factor generated by a quasiprimary stress tensor Ti. If
the only chiral algebra surviving in the IR is a single
Virasoro algebra (which is our claim), it must be the
diagonal one generated by T̂ ≡P

i T
i, which we will calldVir. Any CFT with this property is guaranteed to be

irrational due to the standard result that c > 1 implies
infinitely many Virasoro primaries [45].
We will start by proving a weaker statement—that the IR

chiral algebra is strictly smaller than VirN . The most
convincing way to do this is to compute the anomalous
dimension matrix for Ti operators. In our case, it will come
from σ, since ϵ does not couple any minimal models. One-
loop conformal perturbation theory instructs us to compute
hTiσTji which vanishes by chirality, while the two-loop

calculation involving hTiσσTji is technically challenging.
Fortunately, we can use the alternative method of multiplet
recombination [46–49]. If a short spin l current is
broken, it becomes long. For consistency with the counting
of states, this must happen by “eating” a spin l − 1

divergence Vl:

∂̄Tl ¼ b̃ðgσÞVl; ð10Þ

where b̃ðgσÞ ¼ bgσ þOðg2σÞ by UV conservation. Since

bhVlðz1ÞVlðz2Þi;
Z

d2zh∂̄Tlðz1ÞVlðz2ÞσðzÞi ð11Þ

are both valid expressions for g−1σ h∂̄TlVli, b can be found
by integrating a three-point function [50]. As long as it is
nonzero, the two-loop dimension will be given by the
formula in Ref. [47] involving the UV two-point functions
of Tl and Vl [51].
For the N individual stress tensors, our ability to lift

N − 1 degrees of freedom is strongly suggested by the fact
that the operators Li

−1σ (which sum to a descendant) have
the same quantum numbers as ∂̄Ti. More precisely, the
unique divergence candidates for Ti are

Vi ¼
X

ðj<k<lÞ≠i
ð∂ϕiÞϕjϕkϕl −

1

4
∂ðϕiϕjϕkϕlÞ; ð12Þ

summing to zero, where we used the shorthand notation
ϕ≡ ϕð1;2Þ. We can then compute hViVji and use the Ward
identities for Ti to fix b. Diagonalizing this matrix, the spin-
2 dilation eigenstates are T̂ and Ti − Tiþ1 for i⩽N − 1.
The anomalous dimension matrix correspondingly has a
zero eigenvalue, associated to T̂, and the (N − 1)-fold
degenerate

γ½Ti − Tiþ1� ¼ ðg�σπÞ2
3

N − 1
ð13Þ

describing a dVir primary in the standard representation
of SN .
Moving onto the harder task, ruling out enhanced

symmetry means proving that all of the infinitely many
higher spin UV currents outside the dVir identity multiplet
lift in the IR. We will obtain evidence for this with a brute-
force check up to spin 10. The necessary computational

resources can be greatly reduced by checking dVir pri-
maries and realizing that descendants of them will lift in the
same way. Similarly, it is enough to consider SN singlets
[52] which enable a compact notation. The state associated
to T̂ in radial quantization is clearly

P
i L

i
−2j0i.

Suppressing indices and the vacuum, it becomes ΣL−2.
When encountering a multiple sum, we will implicitly
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subtract traces so that a product of sums includes only terms
where the indices differ. An example from Eq. (4) is
σ ¼ ð1=4!ÞðN

4
Þ−1=2ðΣϕÞ4. Now,

T4 ¼ ΣL−4 −
5

3
ΣL2

−2 þ
9

N − 1
ðΣL−2Þ2 ð14Þ

is the unique singlet primary current at spin 4. At genericN,
the space of potential divergences is two dimensional,
and we can find a linear combination V⊥

4 such that
hT4V⊥

4 σi ¼ 0. Its orthogonal partner

V4¼ 12ðΣϕÞ3ðΣL−3ϕÞ−18ðΣϕÞðΣL−1ϕÞ3
þ9ðΣϕÞ2ðΣL−1ϕÞðΣL2

−1ϕÞ−7ðΣϕÞ3ðΣL3
−1ϕÞ ð15Þ

then ensures the lift of T4 for general N [53] with

γ½T4� ¼ ðg�σπÞ2
5N þ 22

2NðN − 1Þ : ð16Þ

Table I counts Tl and Vl operators for increasing spin.
As with the counting in Ref. [54], the matrix hTI

lV
J
lσi

quickly becomes much wider than it is tall [55]. This makes
it highly believable that the rows will be linearly indepen-
dent. Code which performs the explicit check is attached to
this Letter’s arXiv submission [56]. At l ¼ 10, we have run
it for several values of N⩾5 (which takes about one CPU
day) and found that everything lifts. For l⩽8, we have
additionally done a symbolic check which establishes this
result for all values of N which are large enough for the
numbers in Table I to stabilize. The case of exactly four
copies is a different story. The 2 × 2 matrix for l ¼ 6 has
zero determinant, which means a current at this spin is
conserved to two loops [57]. Signs of enhanced symmetry
therefore appear if and only if N ¼ 4.
Double twist operators.—Given our handle on the

multiplet of conserved currents, analyticity in spin [22]
makes it tempting to look for trends within operator
families. Consider Φ≡ Σϕ with dVir primaries

O0 ¼ ðΣϕÞ2;
O2 ¼ ðΣϕÞðΣL̄2

−1ϕÞ − 3ðΣL̄−1ϕÞ2

−
3

N − 2
ðΣL̄−2ÞðΣϕÞ2; ð17Þ

of increasing spin (T̄ weight) in Φ ×Φ. For m → ∞, these
clearly have unit twist. Another regime which makes the
twist of Eq. (17) well understood is N → ∞. Even though
this sends Eq. (16) to zero, it also causes all higher Virasoro
generators to decouple, leaving the slð2Þ result τ → 1þ
2γΦ ≈ 1 − ð1=2mNÞ as l → ∞ [18,19]. This limit should
be reached monotonically due to Nachtmann’s theorem
[60]. To investigate smaller values of m and N, we have
computed anomalous dimensions up to spin 8 leading to
matrices of size 1, 1, 4, 11, and 29. Employing

ðΓÞJI ¼ −πðgσCIKσ þ gϵCIKϵÞðN −1ÞKJ ð18Þ

to accommodate operators which are not orthonormal [61],
two checks become apparent. First, the ϵ term is provably a
multiple of the identity as required for a decoupled flow.
Second, eigenvalues of the σ term [62] (and, hence, of the
sum) appear to be solvable by radicals if and only if N ¼ 4.
Some N ¼ 4 eigenvalues are degenerate, thus demonstrat-
ing the effect of the spin-6 current [64].
More extensive numerical experiments show that 45 of

these 46 eigenvalues fall into the following three types:
(1) positive numbers decaying as N−1 for large N, (2) neg-
ative numbers with a finite large N limit, and (3) negative
numbers asymptotic to −ð1=2mNÞ [66]. Type 3 is remark-
able, because it shows that τ ¼ 1þ 2γΦ can be achieved at
large N without the spin being large. Let us therefore keep
track of where type-3 eigenvalues move as we lower N to
14. Assuming a small shift in the central charge, this is the
smallest integer allowing the Virasoro identity block inΦ ×
Φ to have a discrete contribution in the crossed channel.
These contributions were termed quantum Regge trajecto-
ries in Ref. [21] and shown to reproduce ordinary Regge
trajectories frommean field theory as c → ∞. At large spin,
their twists are bounded above by ½ðc − 1Þ=12� and satisfy a
version of Nachtmann’s theorem. If we assume the unique
type-3 eigenvalue at spin 4 lies on such a trajectory, its fate
for higher spins is tightly constrained by monotonicity. At
spin 6, there is only one type-3 eigenvalue which can give it
a larger twist. At spin 8, there are two, but the distance
between them is very small. The picture that emerges
is Fig. 2.
These perturbative results can no longer be trusted when

l becomes large enough to compete with m. The behavior
which takes over is found by relating τ to c andΔΦ with the
Virasoro analytic bootstrap [20,21] and then perturbing the
latter quantities. The result

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 7

p

3=
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 7

p þ 2πg�ϵffiffiffiffiffiffiffiffiffi
N=3

p � ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N − 7

r
− 2

�
ð19Þ

holds for
ffiffiffi
l

p
γ� ≫ 1 or

ffiffiffi
l

p
≫ m ≫ 1. Here, γ� is the twist

of the most weakly broken current which we expect to be
T4. It would be interesting to find a nonperturbative

TABLE I. Ordered pairs giving the number of primary singlet
currents Tl and then the number of potential divergences for them
Vl built out of ϕð1;2Þ.

N

l 4 5 6 7

4 (1, 1) (1, 2) (1, 2) (1, 2)
6 (2, 2) (2, 5) (2, 6) (2, 6)
8 (4, 7) (4, 17) (4, 22) (4, 23)
10 (5, 18) (7, 50) (7, 69) (7, 75)
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estimate for this Regge trajectory in between the regimes of
Eq. (19) and Fig. 2.
Discussion.—Because of the recombination analysis in

this Letter, Occam’s razor favors the following scenario.
The fixed points (8) with N > 4 have only Virasoro
symmetry and are, therefore, irrational. If this were false,
the first SN singlet disproving it would need to have a spin
of at least 12. This conclusion should also apply to any
extension of Eq. (4) which explicitly breaks SN [67]. In
particular, there are simple interactions preserving ZN ,
which is the symmetry of a stack of layers with periodic
boundary conditions. Following Ref. [63], the large N limit
in such cases could give a window onto three-dimensional
physics.
All models just discussed can be defined for the

continuum or the lattice. Hamiltonian truncation and
Monte Carlo techniques are, therefore, both available
for determining the precise extent of the conformal
window [68].
Finally, there is much that can be said about analogs of

Eq. (4) which couple minimal models of a W algebra. The
setup examined in Ref. [32] uses W½dn�, which is part of a
family W½g� labeled by a simply laced Lie algebra. If one
includes the A series as well, the space of SN preserving
flows becomes richer but not infinitely so. In particular, the
requirement that operators become marginal as c →
rankðgÞ allows g to be no larger than a8. A detailed study
of the various possibilities will appear in future work [69].
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