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One of the main quests in quantum metrology is to attain the ultimate precision limit with given
resources, where the resources are not only of the number of queries, but more importantly of the allowed
strategies. With the same number of queries, the restrictions on the strategies constrain the achievable
precision. In this Letter, we establish a systematic framework to identify the ultimate precision limit of
different families of strategies, including the parallel, the sequential, and the indefinite-causal-order
strategies, and provide an efficient algorithm that determines an optimal strategy within the family of
strategies under consideration. With our framework, we show there exists a strict hierarchy of the precision
limits for different families of strategies.
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Introduction.—Quantum metrology [1,2] features a
series of promising applications in the near future [3]. In
the prototypical setting of quantum metrology, the goal is
to estimate an unknown parameter carried by a quantum
channel, given N queries to it. A pivotal task is to design
a strategy that utilizes these N queries to generate a
quantum state with as much information about the
unknown parameter as possible. This often involves, for
example, preparing a suitable input probe state [4–6] and
applying intermediate quantum control [7–10] as well as
quantum error correction [11–14].
In reality, the implementation of strategies is subject to

physical restrictions. In particular, within the noisy and
intermediate-scale quantum (NISQ) era [15], we have to
adjust the strategy to accommodate the limitations on the
system. For example, for systemswith short coherence time it
might be favorable to adopt the parallel strategy [Fig. 1(a)],
where multiple queries of the unknown channel are applied
simultaneously on a multipartite entangled state [4]. When
the system has longer coherence time and can be better
controlled, one could choose to query the channel sequen-
tially [Fig. 1(b)], which may potentially enhance the pre-
cision. In addition to the parallel and sequential strategies, it
was recently discovered that the quantum SWITCH [16], a
primitive where the order of making queries to the unknown
channel is in a quantum superposition [Fig. 1(c)], can be
employed to generate new strategies of quantum metro-
logy [17–19] that may even break the Heisenberg limit [19].
Moreover, indefinite causal structures beyond the quantum
SWITCH [16,20,21] [Figs. 1(d) and 1(e)] have recently been
shown to further boost the performance of certain information
processing tasks [22,23]. The ultimate performance of these
strategies in quantummetrology, however, remainsunknown.
This is mainly due to the lack of a systematic method that

optimizes the probe state, the control and other degrees of
freedom in a strategy in a unified fashion which leads to the
ultimate precision limit.
In this Letter, we develop a semidefinite programming

(SDP) method of evaluating the optimal precision of single-
parameter quantum metrology for finite N (which we call
the nonasymptotic regime) over a family of admissible
strategies. With this method, we show a strict hierarchy (see
Fig. 2) of the optimal performances under different families
of strategies, which include the parallel, the sequential,
and the indefinite-causal-order [16,20,21] ones (see Fig. 1).

(a) (b)

(c) (d) (e)

FIG. 1. Prototypical strategies of quantum metrology (for the
N ¼ 2 case). Eϕ is a quantum channel carrying an unknown
parameter ϕ, and the blue shaded area represents a strategy. (a) A
parallel strategy. (b) A sequential strategy, where U is a control
operation. (c) A quantum SWITCH strategy. The blue and red
lines, respectively, correspond to two different execution orders
entangled with a control qubit. (d) A causal superposition
strategy. Two sequential strategies, plotted in blue and in red,
respectively, are entangled with a control qubit (not shown in the
figure) and the output will be measured with the control qubit
collectively. (e) A general indefinite-causal-order strategy.
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In conjunction, we design an algorithm to obtain an optimal
strategy achieving the highest precision. For the strategy set
that admits a symmetric structure, we develop a method of
reducing the complexity of our algorithms by an exponen-
tial factor.
Quantum Fisher information.—The uncertainty δϕ̂ of

estimating an unknown parameter ϕ encoded in a quantum
state ρϕ, for any unbiased estimator ϕ̂, can be determined
via the quantum Cramér-Rao bound (QCRB) as δϕ̂ ≥
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νJQðρϕÞ

p
[24–26], where JQðρϕÞ is the quantum

Fisher information (QFI) of the state ρϕ and ν is the
number of repeated measurements [27]. For single-
parameter estimation, the QCRB is achievable, and the
QFI thus quantifies the amount of information that can be
extracted from the quantum state. One way to compute the
QFI is [28,29]

JQðρϕÞ ¼ 4 min
TrAðjΨϕihΨϕjÞ¼ρϕ

h _Ψϕj _Ψϕi; ð1Þ

where jΨϕi is the purification of ρϕ with an ancillary
space HA, TrA denotes the partial trace over HA, and
_Ψ ≔ ∂Ψ=∂ϕ. When the parameter is carried by a quantum
channel Eϕ, i.e., a completely positive trace-preserving
(CPTP) map, the channel QFI can be defined as the
maximal QFI of output states using the optimal input

assisted by arbitrary ancillae [28,30–32]: JðchanÞQ ðEϕÞ ¼
maxρin∈SðHS⊗HAÞJQ½ðEϕ ⊗ IAÞðρinÞ�, where SðHÞ denotes
the space of density operators on the Hilbert spaceH,HS=A

denotes the Hilbert space of the system or ancillae, and IA
is the identity on HA.

We denote by LðHÞ the set of linear operators on the
finite-dimensional Hilbert space H, and L½LðH1Þ;LðH2Þ�
denotes the set of linear maps from LðH1Þ to LðH2Þ. By
the Choi-Jamiołkowski (CJ) isomorphism, a parametrized
quantum channel Eϕ∈L½LðH2i−1Þ;LðH2iÞ� (for 1≤ i≤N)
can be represented by a positive semidefinite operator
(called the CJ operator) Eϕ¼ChoiðEϕÞ¼Eϕ⊗IðjI⟫⟪IjÞ,
where jI⟫ ¼ P

i jiijii. The CJ operator of N identical
quantum channels is Nϕ ¼ E⊗N

ϕ ∈ Lð⊗2N
i¼1 HiÞ.

Strategy set in quantum metrology.—A strategy is an
arrangement of physical processes (the blue shaded area
in Fig. 1) which, when concatenated with given queries to
Eϕ, generates an output quantum state carrying the infor-
mation about ϕ. A strategy can be described by a CJ
operator on LðHF ⊗2N

i¼1 HiÞ, whereHF denotes the output
Hilbert space of the concatenation, referred to as the global
future space. The concatenation of two processes is
characterized by the link product [33,34] of two corre-
sponding CJ operators A ∈ Lð⊗a∈A HaÞ and B ∈
Lð⊗b∈B HbÞ as

A � B ≔ TrA∩B½ð1BnA ⊗ ATA∩BÞðB ⊗ 1AnBÞ�; ð2Þ

where Ti denotes the partial transpose on Hi, and HA=B

denotes ⊗i∈A=B Hi. The output state lies in the global
future F, which should not affect any state in the past.
Following the above formalism, given a sufficiently large

ancillary Hilbert space, a strategy set determined by the
relevant causal constraints is described by a subset P of

Strat≔ fP∈LðHF ⊗2N
i¼1 HiÞjP≥ 0; rankðPÞ ¼ 1g: ð3Þ

Here, without loss of generality [35], we have restricted P
to pure processes (rank-1 operators) due to the monoto-
nicity of QFI [36]. Our goal is to identify the ultimate
precision limit of parameter estimation characterized by the
QFI within such constraints:
Definition 1: The QFI of N quantum channels Eϕ [37]

given a strategy set P is

JðPÞðNϕÞ ≔ max
P∈P

JQðP � NϕÞ; ð4Þ

where JQðρÞ is the QFI of the state ρ, and Nϕ is the CJ
operator of N channels.
In general we can write the ensemble decomposition [28]

of the CJ operator Nϕ as Nϕ ¼ P
r
i¼1 jNϕ;iihNϕ;ij ¼ NϕN

†
ϕ,

where Nϕ ≔ ðjNϕ;1i;…; jNϕ;riÞ and r ≔ maxϕrankðNϕÞ.
We also define _̃Nϕ ≔ _Nϕ − iNϕh for h ∈ Hr, where Hr

denotes the set of r × r Hermitian matrices, and the
performance operator [38]

FIG. 2. Hierarchy of QFI using parallel, sequential, and
indefinite-causal-order strategies. We take N ¼ 2 and ϕ ¼ 1.0,
fix t ¼ 1.0 and vary the decay parameter p. The gaps can be seen
more clearly by zooming in on the interval [0.35, 0.45] of the
value of p. JðSupÞ ¼ JðICOÞ with an error tolerance of no more
than 10−8 in this case, but the gap between JðSupÞ and JðICOÞ could
exist for larger N or for other types of noise, which can be
observed by randomly sampling noise channels.
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ΩϕðhÞ ≔ 4ð _̃Nϕ
_̃N
†
ϕÞT: ð5Þ

With these notions, we can show (see Ref. [39], which is
analogous to the approach in [38]) that the QFI admits the
form

JðPÞðNϕÞ ¼ max
P̃∈P̃

min
h∈Hr

Tr½P̃ΩϕðhÞ�; ð6Þ

with

P̃ ≔ fP̃ ¼ TrFPjP ∈ Pg: ð7Þ

To evaluate the QFI, we first exchange maxP̃ and minh
without changing the optimal QFI, assured by the minimax
theorem [58,59], since the objective function is concave on
P̃ and convex on h [60]. Hence, the problem is cast into

JðPÞðNϕÞ ¼ min
h

max
P̃∈P̃

Tr½P̃ΩϕðhÞ�: ð8Þ

Then we fix h and formulate the dual problem of maxi-
mization over the set P̃. Finally we further optimize the
value of h. To simplify the calculation of QFI we require
that

P̃ ¼ Conv
�
⋃
K

i¼1

fSi ≥ 0jSi ∈ Sig
�
; ð9Þ

where Convf·g denotes the convex hull, and each Si for
i ¼ 1;…; K is an affine space of Hermitian operators.
Adopting the above-mentioned method, we get
Theorem 1.—Given an arbitrary strategy set P such that

P̃ given by Eq. (7) satisfies the condition Eq. (9), the QFI of
N quantum channels Eϕ can be expressed as the following
optimization problem:

JðPÞðNϕÞ¼ min
λ;Qi;h

λ;

s:t: λQi ≥ΩϕðhÞ; Qi ∈ S̄i; i¼ 1;…;K; ð10Þ

where S̄i ≔ fQ is HermitianjTrðQSÞ ¼ 1; S ∈ Sig is the
dual affine space of Si.
The proof can be found in [39]. We remark that similar

optimization ideas have been applied to other tasks, such as
quantum Bayesian estimation [61], quantum network opti-
mization [62], non-Markovian quantummetrology [38], and
quantum channel discrimination [23]. The minimization
problem in Theorem 1 can be further written in the form of
SDP and solved efficiently, with detailed numerically
solvable forms given in [39], where the constraints in
Eq. (10) can be further simplified in some cases.
Optimal strategies.—By itself, the QFI does not reveal

how to implement the optimal strategy achieving the highest
precision. Here, in addition to Theorem 1, we design an

algorithm that yields a strategy attaining the optimal QFI for
any strategy set satisfying Eq. (9). The method, which
generalizes the method of finding an optimal probe state for
a single channel [63,64], is summarized as Algorithm 1 (see
Ref. [39] for its derivation).
By Algorithm 1 we obtain the CJ operator of a strategy

that attains the optimal QFI. For strategies following
definite causal order, there exists an operational method
of mapping the CJ operator of the strategy to a probe state
and a sequence of in-between control operations with
minimal memory space [65]. For causal order superposition
strategies (see the strategy set Sup), we show that they can
always be implemented by controlling the order of oper-
ations in a circuit with a quantum SWITCH [39]. In this
way, we obtain a systematic method to identify optimal
sequential and causal superposition strategies, one of the
key problems in quantum metrology.
Strategy sets.—We consider the evaluation of QFI for

five different families of strategies. In all the following
definitions the subscript i of an operator denotes the Hilbert
space Hi it acts on.
The family of parallel strategies [see Fig. 1(a)] is the first

and one of the most successful examples of quantum-
enhanced metrology, featuring the usage of entanglement to
achieve precision beyond the classical limit [66]. By
making parallel use of N quantum channels together with
ancillae, we can regard these N channels as one single
channel from Lð⊗N

i¼1 H2i−1Þ to Lð⊗N
i¼1 H2iÞ. A parallel

strategy set Par is defined as the collection of P ∈ Strat
such that [34]

TrFP¼ 12;4;…;2N ⊗Pð1Þ; TrPð1Þ ¼ 1: ð12Þ

Note that the optimal QFI of parallel strategies can also be
evaluated using the method in [28,30].
A more general protocol is to allow for sequential use of

N channels assisted by ancillae, where only the output of
the former channel can affect the input of the latter channel,
and any control gates can be inserted between channels [see
Fig. 1(b)]. A sequential strategy set Seq is defined as the
collection of P ∈ Strat such that [34]

Algorithm 1. Find an optimal strategy in the set P.

(i) Given Nϕ the CJ operator of N channels, solve for an optimal
value h ¼ hðoptÞ in Eq. (10) of Theorem 1 via SDP.

(ii) Fixing h ¼ hðoptÞ, solve for an optimal value P̃ðoptÞ of P̃ ∈ P̃ in
Eq. (6) via SDP such that

RefTrfP̃ðoptÞ½−iNϕH ð _Nϕ − iNϕhðoptÞÞ†�Tgg ¼ 0

for all H ∈ Hr;
ð11Þ

where Nϕ ≔ ðjNϕ;1i;…; jNϕ;riÞ. An optimal strategy PðoptÞ ∈
P can be taken as a purification of P̃ðoptÞ.
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TrFP ¼ 12N ⊗ PðNÞ; TrPð1Þ ¼ 1;

Tr2k−1PðkÞ ¼ 12k−2 ⊗ Pðk−1Þ; k ¼ 2;…; N: ð13Þ

Unlike the case of parallel strategies, there is no existing
way of evaluating the exact QFI using sequential strategies.
We also consider families of strategies involving indef-

inite causal order. The first one, denoted by SWI, takes
advantage of the (generalized) quantum SWITCH [67,68],
where the execution order of N channels is entangled with
the state of anN!-dimensional control system [see Fig. 1(c)].
See Ref. [39] for the formal definition.
More generally, we consider the quantum superposition

of multiple sequential orders, each with a unique order of
querying the N channels [see Fig. 1(d)]. This can be
implemented by entangling N! definite causal orders
with a quantum control system [69]. If N ¼ 2 and
the control system is traced out, this notion is equivalent
to causal separability [20,21]. A causal superposition
strategy set Sup is defined as the collection of P ∈
Strat such that

TrFP¼
X
π

qπPπ;
X
π∈SN

qπ ¼ 1;

Pπ ∈Seqπ; qπ ≥ 0; π ∈ SN; ð14Þ

where each permutation π is an element of the symmetric
group SN of degree N, and each Seqπ denotes a sequential
strategy set whose execution order of N channels is

Eπð1Þ
ϕ → Eπð2Þ

ϕ → � � � → EπðNÞ
ϕ , having denoted by Ek

ϕ the
channel from LðH2k−1Þ to LðH2kÞ. Note that SWI is a
subset of Sup, where the intermediate control is trivial.
There are other strategies, such as quantum circuits with
quantum controlled casual order (QC-QCs) and probabi-
listic QC-QCs [69,70], which we will not discuss here.
Finally, we introduce the family of general indefinite-

causal-order strategy [see Fig. 1(e)], which is the most
general strategy set considered in this Letter. Here the only
requirement is that the concatenation of the strategy P with
N arbitrary channels results in a legitimate quantum state.
The causal relations in this case [21] are a bit cumbersome,
but for our purpose what matters is the dual affine space
(see Theorem 1), which is simply the space of no-signaling
channels [16,62]. A general indefinite-causal-order strategy
set ICO is defined as the collection of P ∈ Strat such that

ρF ¼P�
�
⊗N

j¼1 E
j
�
; ρF ≥ 0; TrρF ¼ 1; ð15Þ

for any Ej ∈ LðH2j−1 ⊗ H2j ⊗ HAj
Þ that denotes the CJ

operator of an arbitrary quantum channel with an arbitrary
ancillary space HAj

.
We note that, unlike the previous strategies that can

always be physically realized, the physical realization of
the general ICO is untraceable [69,70]. The optimal value

obtained with general ICO nevertheless serves as a useful
tool that can gauge the performances of different strategies.
For example, as we will show, in some cases the optimal
QFI JðSupÞ and JðICOÞ are equal or nearly equal. This then
shows that the physically realizable strategy obtained from
the set Sup is already optimal or nearly optimal among all
possible strategies, which we will not be able to tell
without JðICOÞ.
Symmetry reduced programs for optimal metrology.—

The complexity of the original optimization problems in
Theorem 1 and Algorithm 1 can be reduced by exploiting
the permutation symmetry. In [39], we prove that we can
choose a permutation-invariant matrix h for Theorem 1 and
solve for a permutation-invariant optimal strategy [71] by
Algorithm 1 based on this choice, if any permutation π ∈
SN bijectively maps each affine spaceSi [in Eq. (9)] to some
affine space Sj. That is, for any π ∈ SN and any i, there
exists a j such that the mapping S ↦ GπSG

†
π on Si is a

bijective function from Si to Sj, where Gπ is a unitary
representation of π. Furthermore, if each space Si itself is
permutation invariant, we can restrict each Qi ∈ S̄i to be
permutation invariant, further reducing the complexity of
optimization. For both optimization problems we can apply
the technique of group-invariant SDP to reduce the size as
there exists an isomorphism which preserves positive semi-
definiteness, from the permutation-invariant subspace to the
space of block-diagonal matrices [72] (Theorem 9.1).
Table I compares the number of variables involved in
QFI evaluation with and without exploiting the symmetry
(see Ref. [39] for its derivation as well as the complexity of
Algorithm 1, where by group-invariant SDP we also
numerically evaluate the growth of QFI JðICOÞ up toN ¼ 5).
Hierarchy of strategies.—By substituting the definitions

of different strategy sets into Theorem 1, we obtain the
exact values of the optimal QFI. We find that a strict
hierarchy of QFI exists quite prevalently. For demonstration
purposes, here we show only the result for the amplitude
damping channel for N ¼ 2 and supplement our findings
with bountiful numerical results in [39]. In this case,
the process encoding ϕ is a z rotation UzðϕÞ ¼ e−iϕtσz=2,
where t is the evolution time, followed by an amplitude
damping channel described by two Kraus operators:

TABLE I. Complexity of QFI evaluation for each family of
strategies (with respect to N). The asymptotic numbers of
variables in optimization are compared between the original
(Ori.) and group-invariant (Inv.) SDP. We denote d ≔
dimðH1Þ dimðH2Þ and s ≔ maxϕrankðEϕÞ ≤ d.

SDP Par Seq SWI Sup ICO

Ori. OðsNÞ OðdNÞ OðsNÞ OðN!dNÞ OðdNÞ
Inv. OðNd2−1Þ OðdNÞ OðNs2−1Þ OðdNÞ OðNd2−1Þ
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KðADÞ
1 ¼j0ih0jþ ffiffiffiffiffiffiffiffiffiffi

1−p
p j1ih1j and KðADÞ

2 ¼ ffiffiffiffi
p

p j0ih1j, with
the decay parameter p.
In Fig. 2 we plot the QFI versus p for the amplitude

damping noise with all 5 strategy sets for N ¼ 2. A strict
hierarchy of Par, Seq and ICO holds if p is neither 1 nor 0,
i.e., JðParÞ < JðSeqÞ < JðICOÞ. This is in contrast to the
asymptotic regime of N → ∞, where the relative difference
between JðSeqÞ and JðParÞ vanishes for this channel [64].
Besides, in this case general ICO cannot strictly outperform
Sup, implying that causally superposing two sequential
strategies is sufficient to achieve the general optimality in
this particular scenario. The gap between JðSupÞ and JðICOÞ,
however, could be observed for the same channel with
larger N or for other channels when N ¼ 2 [39]. In fact, by
randomly sampling noise channels from CPTP channel
ensembles, we find that for 984 of 1000 random channels, a
strict hierarchy JðParÞ < JðSeqÞ < JðSupÞ < JðICOÞ holds for
N ¼ 2, implying that there exist more powerful strategies
than causal superposition strategies in these cases. We note
that a strict hierarchy of strategies has been found for
channel discrimination in [23], but much less is known in
quantum metrology until our Letter.
Our method can also test the tightness of existing QFI

bounds in the nonasymptotic regime, which has seldom
been done until this Letter. Here we take the commonly
used, asymptotically tight [64] upper bound for parallel
strategies [see Ref. [28] (Theorem 4) or [30] [Eq. (16)] ].
For p ¼ 0.5, our result shows that the exact parallel QFI
JðParÞ ¼ 1.795 is 32.7% lower than the asymptotically tight
parallel upper bound 2.667, and even the exact sequential
QFI JðSeqÞ ¼ 2.179 is 18.3% lower than this parallel upper
bound [73]. Similar phenomena are observed in other noise
models and for different N (see Ref. [39]).
With Algorithm 1 we can also construct strategies to

achieve the optimal QFI. Remarkably, we find that a simple
strategy of applying a quantum SWITCH using a control
qubit jþiC ≔ ðj0iC þ j1iCÞ=

ffiffiffi
2

p
(without any additional

control operations on the probe) beats any sequential
strategies (which can involve complex control) in certain
cases (e.g., p < 0.5). To our best knowledge, this is the
only instance of noisy quantum metrology so far, where the
advantage of indefinite causal orders is established rigor-
ously. In [39] we also present two explicit examples of
implementing optimal sequential and causal superposition
strategies, obtained by first applying Algorithm 1 and
converting the CJ operators into quantum circuit consisting
of single-qubit rotations and CNOT gates (as well as a
quantum SWITCH for the case of Sup). For optimal causal
superposition strategies, the permutation symmetry allows
us to only control the execution order of channels while
fixing state preparation and intermediate control [ρ↑ ¼ ρ↓
andU↑ ¼ U↓ in Fig. 1(d)], which can be implemented by a
(2N − 1)-quantum SWITCH of N channels Eϕ and N − 1

intermediate operations.

Our result serves as a versatile tool for the demonstration
of optimal quantum metrology and the design of optimal
quantum sensors, especially in the context of control
optimization [74,75] and indefinite causal orders [16–23].
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