
Oberlack et al.Reply: Comment [1] proposes the approxi-
mation of the scaling laws developed in [2] based on
symmetry analyses for the instantaneous moments H by
neglecting moments for the fluctuations R. In this case, not
only the key scaling is lost, but very large deviations from
the direct numerical simulation (DNS) data are obtained for
high moments. Comment [3] proposes to compare the R
moments, which result directly from the above scaling laws
of the H moments, with the DNS data. This approach is
meaningless because uncertainty for R moments n > 2
grow exponentially due to finite DNS datasets.
All complete theories of turbulence, i.e., the Lundgren

probability density functions hierarchy [4], the Hopf func-
tional equation [5], and the characteristic function equa-
tions by Monin [6] are based on the full instantaneous
velocities with the distinct advantage that all these equa-
tions are linear. This immediately implies classical and, in a
certain sense, generic symmetries of linear equations.
However, they go beyond those of the Navier-Stokes
equations and represent statistical properties whose deep
physical meaning was worked out in detail by Oberlack and
co-workers in the following papers [2,7–9].
Both [1] and [3] suggest approximating the H moment

scaling laws in [2] using the mean velocity Ū1 and R
moments, where, following [7], we call the moments based
on the instantaneous velocitiesH moments and those based
on the fluctuations Rmoments. Indeed, the nth power of Ū1

is of the same order of magnitude as the nth H moment.
However, both authors do not recognize that the absolute
magnitude of the numerical values makes no statement
about the validity of a scaling law. The indicator function is
the most sensitive parameter for assessing logarithmic or
algebraic scaling laws. For this, we compare the log-region
scaling law (16) in [2] for the moments n ≥ 2 using the
power-law indicator function (18). In Fig. 1, we compare
the indicator function, which with the symmetry-based
scaling law naturally leads to constant exponents ωðn − 1Þ
and which matches DNS data in the log region very well.
However, the nth power of the mean velocity in Fig. 1
apparently is a poor approximation. This becomes espe-
cially clear for large moments, where the value deviates
significantly from the theoretical Γn and is not constant.
The mentioned approximation of the H moments breaks

down if the mean velocity vanishes. However, the sym-
metry theory is completely independent of whether the
moments contain the mean velocity. This can be seen by
considering the moments of U2 and U3 in the channel
center because almost identical deficit scaling laws apply to
them as for the U1 velocity, i.e.,
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Above, Un
i
ð0Þ defines the nth moment on the centerline.

The data for this were already available to us since the
end of the DNS runs in [10]. However, we deliberately did
not publish them because the statistical convergence is less
good than for the U1 moments. The above laws (1) with
exactly the same numbers for the exponents as in [2] are
compared with DNS data in Fig. 2. The agreement speaks
for itself, though a slight waviness due to insufficient
convergence is visible.
Symmetry theory has evidently made a matching pre-

diction for the scaling of U2 and U3 moments, which is
founded inherently on the statistical symmetries. Both
authors of [1] and [3] apparently misinterpret the concept
of symmetries and statistical symmetries, which also leads
to the fundamentally incorrect statement in [3] that “the
scaling laws in [2] are not solutions to the statistical Navier-
Stokes equations.”

FIG. 1. Comparison of H moments of U1 using the indicator
function for n ¼ 2;…; 6 from DNS [10] (black points), the
symmetry-based theory, i.e., Un

1
þ ¼ CnðyþÞωðn−1Þ − Bn in [2]

(black lines), and an approximation via the power of the mean
velocity Ūn

1 (orange points) as suggested in [3].

FIG. 2. Deficit scaling plot of the moments of U2 and U3 in the
channel center for the H moment orders n ¼ 2, 4, 6 according to
formula (1). For a better visibility, the curves are each shifted by
10n−2. The lines refer to the scaling laws (1), where σ1 ¼ 1.95
and σ2 ¼ 1.94 taken from [2] for the U1 moments were used
unchanged. Squares and circles refer to the DNS data taken from
the datasets published in [10].
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Finally, we examine the proposal propagated, in par-
ticular, in [3] to analyze the R moments of fluctuations. For
the second moment of the fluctuations R2, symmetry theory
and DNS agree reasonably well, as seen in Fig. 3. For R2,
the uncertainty of the DNS data, defined in (5), is still very
small and below 2%, so there is sufficient reliability for this
quantity.
However, in the following, we verify indubitably that this

makes absolutely no sense for R moments with n > 2, as
their uncertainties grow exponentially. To see this, consider
the uncertainties of Ū1, the H and the R moments,

Ū1 → Ū1þ δŪ1
; Hn →Hnþ δHn

; Rn →Rnþ δRn
:

ð2Þ

The δ defines the uncertainty caused by a finite DNS
dataset (see, e.g., [11]), and we have used a simplified
notation for the H and R moments.
The H moments are the base values because only these

can be calculated directly from the DNS data. The error
bars for the H moments have been calculated according to
[11]. The R moments uncertainty must be calculated from
the H moments uncertainties in a second step. For this, we
start with the relation between the moments, i.e.,

Rn ¼
Xn
k¼0

ð−1Þnþ1
n!

k!ðn− kÞ!Hn−kŪk
1 ¼Hnþ �� �

þ ð−1Þnðn− 1ÞŪn
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Substituting (2) into the formula of Gaussian uncertainty
propagation, which, for this case, reads

δRn
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∂Hn−1
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we obtain uncertainty measures for the R moments, i.e.,

δRn
¼ δHn

þ � � � þ nðn − 1ÞŪn−1
1 δŪ1

: ð5Þ

The leading-order uncertainty terms of the nth order R
moments scale with the mean velocity to the power of
n − 1, i.e.,

δRn
∼ Ūn−1

1 δŪ1
: ð6Þ

Already for n ¼ 3, we can see in Fig. 4 that the uncer-
tainties are so large that a valid statement about R3 is
meaningless, and for higher n this is, of course, even more
true. Hence, moments of order n > 2 derived from the
fluctuations exhibit extreme uncertainties, and, obviously,
moments from instantaneous velocities are preferable.
Finally, we argue that the high complexity of the

equations of moments for the fluctuations impressively
shows that these equations are ineffective as a basis. This is
especially true for moments n > 2 of the fluctuations, as
has become very clear above. Therefore, it is natural to
employ the equations based on the instantaneous velocities,
i.e., Lundgren [4], Hopf [5], and Monin [6] equations for
any analysis and symmetry analysis to derive scaling laws
thereof.
In summary, Comments [1] and [3] provide little that is

valid and especially the suggestion of comparing DNS data
with R moments for n > 2 is meaningless.
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FIG. 3. u21
þ: Squares represent the DNS data, and the line refers

to the symmetry-based scaling law taken from [2], i.e.,

u21
þ ¼ C2ðxþ2 Þω − B2 − ½ð1=κÞ lnðxþ2 Þ þ B�2, where also the

original values of the parameters were taken thereof.

FIG. 4. The third moment of U1 fluctuations, i.e., R3 ¼ u31,
calculated from (3) based on the DNS data and the uncertainty
estimate represented by error bars δR3

defined in (5).

PHYSICAL REVIEW LETTERS 130, 069403 (2023)

069403-2

https://orcid.org/0000-0002-8458-7288


3Instituto Universitario de Matemática Pura y Aplicada
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46024 València, Spain

Received 9 September 2022; accepted 3 January 2023;
published 9 February 2023

DOI: 10.1103/PhysRevLett.130.069403

*To whom all correspondence should be addressed.
oberlack@fdy.tu-darmstadt.de
[1] G. Brethouwer, preceding Comment, Comment on “Turbu-

lence Statistics of Arbitrary Moments of Wall-Bounded
Shear Flows: A Symmetry Approach,” Phys. Rev. Lett. 130,
069401 (2023).

[2] M. Oberlack, S. Hoyas, S. V. Kraheberger, F. Alcántara-
Ávila, and J. Laux, Turbulence Statistics of Arbitrary
Moments of Wall-Bounded Shear Flows: A Symmetry
Approach, Phys. Rev. Lett. 128, 024502 (2022).

[3] M. Frewer and G. Khujadze, preceding Comment, Com-
ment on “Turbulence Statistics of Arbitrary Moments of
Wall-Bounded Shear Flows: A Symmetry Approach,” Phys.
Rev. Lett. 130, 069402 (2023).

[4] T. S. Lundgren, Distribution functions in the statistical
theory of turbulence, Phys. Fluids 10, 969 (1967).

[5] E. Hopf, Statistical hydromechanics and functional calculus,
Indiana University mathematics Journal 1, 87 (1952).

[6] A. Monin, Equations of turbulent motion, J. Appl. Math.
Mech. 31, 1057 (1967).

[7] M. Oberlack and A. Rosteck, New statistical symmetries
of the multi-point equations and its importance for turbulent
scaling laws, Discrete Contin. Dyn. Syst. 3, 451 (2010).

[8] M.Wacławczyk, N. Staffolani, M. Oberlack, A. Rosteck, M.
Wilczek, and R. Friedrich, Statistical symmetries of the
Lundgren-Monin-Novikov hierarchy, Phys. Rev. E 90,
013022 (2014).

[9] M. Wacławczyk, V. Grebenev, and M. Oberlack, Lie
symmetry analysis of the Lundgren-Monin-Novikov equa-
tions for multi-point probability density functions of turbu-
lent flow, J. Phys. A 50, 175501 (2017).

[10] S. Hoyas, M. Oberlack, F. Alcántara-Ávila, S. V.
Kraheberger, and J. Laux, Wall turbulence at high friction
Reynolds numbers, Phys. Rev. Fluids 7, 014602 (2022).
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