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Phase transitions in equilibrium and nonequilibrium systems play a major role in the natural sciences.
In dynamical networks, phase transitions organize qualitative changes in the collective behavior of coupled
dynamical units. Adaptive dynamical networks feature a connectivity structure that changes over time,
coevolving with the nodes’ dynamical state. In this Letter, we show the emergence of two distinct first-
order nonequilibrium phase transitions in a finite-size adaptive network of heterogeneous phase oscillators.
Depending on the nature of defects in the internal frequency distribution, we observe either an abrupt
single-step transition to full synchronization or a more gradual multistep transition. This observation has a
striking resemblance to heterogeneous nucleation. We develop a mean-field approach to study the interplay
between adaptivity and nodal heterogeneity and describe the dynamics of multicluster states and their role
in determining the character of the phase transition. Our work provides a theoretical framework for
studying the interplay between adaptivity and nodal heterogeneity.
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Phase transitions play an important role in the natural
sciences [1]. Complex dynamical networks [2,3] exhibit a
plethora of nonequilibrium phase transitions organizing
their collective dynamics in response to variations in
control parameters such as interaction strength or noise
[4,5]. In particular, transitions between coherence and
incoherence have attracted significant attention in static
[6] and temporally evolving complex networks [7]. The
Kuramoto model [8] has served as a test bed to study phase
transitions in networks of coupled oscillators. It exhibits
either first or second-order phase transitions from incoher-
ence to full synchronization, depending on the natural
frequency distribution [8–13]. Similarly, network structure
[14] and weight distribution [15] can lead to first-order (or
explosive) transitions and to hysteresis, for which a
universal mechanism has recently been proposed [16].
To better describe real-world phenomena, the original

Kuramoto model has been extended and modified. Beyond
the classical Kuramoto model, generalizations to static and
time-evolving networks have been developed [7,17–22].
The inclusion of additional dynamical degrees of freedom,
e.g., to describe power grids [23–27] by including inertia,
has introduced much richer synchronization transitions
with regimes of coexisting cluster states. Recently, adaptive
dynamical network models were introduced which are
capable of describing chemical [28,29], epidemic [30],

biological [31], neurological [32–34], transport [35], and
social systems [36,37]. Adaptive dynamical networks are
characterized by the coevolution of network structure and
functionality. Paradigmatic models of adaptively coupled
phase oscillators have recently attracted much attention
[38–43]. They have shown promise in predicting and
describing phenomena in more realistic and complex
physical systems such as neuronal and biological systems
[44–47], as well as power grid models [48]. However, the
type and nature of phase transition in this important class of
models remains unclear.
This work characterizes nonequilibrium phase transi-

tions in adaptive networks. We describe phase transitions in
a finite-size Kuramoto model equipped with adaptive
coupling weights. The natural frequencies are considered
to be uniformly distributed, i.e., all possible frequencies are
equally probable, and therefore disorders induced by finite-
size realizations of this distribution impact directly the
synchronization behavior. We find two qualitatively distinct
types of first-order transitions to synchrony akin to first-
order transition phenomena of heterogeneous nucleation
[49]. The first, multistep type of synchronization transition
is characterized by the nucleation and growth of a dominant
cluster, similar to Ostwald ripening in equilibrium and
nonequilibrium systems [50], until the system reaches
synchrony. The second, single-step transition type features
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multiple stable synchronization nuclei, and the transition to
full synchrony is caused by an abrupt merging of large
clusters of similar size. These two paths to synchrony
exhibit a high degree of multistability. We identify the
location of fluctuations in the realization of the natural
frequency distribution as the cause for the two different
scenarios. Methodologically, we present a framework
reducing high-dimensional adaptive networks to a few
mesoscopic variables and show that a collection of partially
synchronized clusters of approximately equal size is more
stable against changes in the coupling strength. With this,
we extend the scope of mean-field approaches beyond the
static network paradigm to adaptive networks.
For neuronal systems with spike-timing-dependent syn-

aptic plasticity, phase oscillator models with phase
difference-dependent adaptation functions have been intro-
duced to explain effects stemming from long-term poten-
tiation and depression [39,44,45,51,52]. Beyond that, phase
oscillator models have served as paradigms for studying
collective behavior in real-world dynamical systems [53].
We consider the adaptively coupled phase oscillator model

dϕi

dt
¼ ωi −

σ

N

XN
j¼1

κij sinðϕi − ϕjÞ; ð1Þ

dκij
dt

¼ −ϵ½κij þ sinðϕi − ϕj þ βÞ�; ð2Þ

for N phase oscillators i ¼ 1;…; N with phases ϕiðtÞ ∈
½0; 2πÞ coevolving with adaptive coupling weights κijðtÞ.
The natural frequency ωi of the ith oscillator is drawn
randomly from a uniform distribution ωi ∈ ½−ω̂; ω̂� [54].
The overall coupling strength is σ, and ϵ characterizes the
timescale separation between the fast oscillator dynamics
and the slower adaptation of the coupling weights. The
parameter β accounts for different adaptation rules, e.g., a
causal rule (β ¼ 0) or a symmetric rule (β ¼ −π=2) where
the order of the phases or their closeness determines the sign
of the coupling weight change [51,55]. Here we focus on
symmetric adaptation rules which support synchronization
[39]; see [56] for other adaptation rules.
Coherence can be quantified by the synchronization

index S which measures the fraction of frequency-
synchronized oscillator pairs S ≔ ð1=N2ÞPN

i;j¼1 sij, where
sij ¼ 1 for equal mean phase velocities of the oscillators i

and j, h _ϕii ¼ h _ϕji, and sij ¼ 0 otherwise [57]. Here

hxi ¼ limT→∞ð1=TÞ
R T0þT
T0

xðtÞdt with sufficiently large
transient time T0. For S ¼ 1 the system is fully frequency-
synchronized, whereas for S ¼ 0 the system is
asynchronous.
With increasing coupling strength σ, system (1)–(2)

undergoes a transition from asynchrony to full synchroni-
zation, see Fig. 1(a) and Supplemental Material [56]. The
routes to synchrony with increasing coupling strength σ in

Fig. 1(a) follow two paths of first-order transitions: a
gradual multistep (upper, red) and an abrupt single-step
(lower, blue) path featuring multiple small steps or a single
large step in the transition to synchrony, respectively. In
what follows, we describe these paths and determine the
finite-size features in the realization of the natural fre-
quency distribution that lead to either a multistep or
single-step transition to synchrony.
Figures 1(b) and 1(c) show the multistep and single-

step transitions, respectively, for two representative real-
izations of the natural frequencies (displayed as insets)
and 30 different initial conditions of the phases ϕið0Þ.
Depending on initial conditions and natural frequencies
the system can develop a large number of coexisting
states. The multistep path in Fig. 1(b) exhibits a higher
degree of multistability even for the fixed realization of
frequencies and a large number of transitions between
coexisting states. Figures 2(a)–2(d) show snapshots of the

(a)

(b) (c)

FIG. 1. Paths to synchrony for system (1)–(2). (a) Synchroniza-
tion index S as a function of the coupling strength σ for 100
simulations with N ¼ 50 oscillators. Each run was initiated with
random initial conditions and σ was increased in steps of
Δσ ¼ 0.01. For details on the up-sweep protocol, we refer to
[56]. For each run, natural frequencies are drawn independently
from a uniform distribution ωi ∈ ½ω̂; ω̂� with ω̂ ¼ 0.25. The
dotted lines indicate jumps in the synchronization index during
the transition. The inset shows realizations of the finite-size
frequency distributions for the multistep (left) and single-step
(right) paths generated from 1000 simulations. (b),(c) Synchro-
nization index S for fixed realization of the natural frequencies and
30 different initial conditions, consistently leading to the multistep
(b) or single-step transition (c). Insets show the natural frequencies
used in the simulations. The circles highlight areas of higher
frequency densities. The synchronization index S is determined
with an averaging time window T ¼ 7 × 103 and transient time
T0 ¼ 3 × 103. Other parameters: β ¼ −0.53π, ϵ ¼ 0.01.
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coupling matrix corresponding to the multistep transition.
It is seen that a cluster nucleus emerges and, upon
increasing the coupling strength, entrains more and more
oscillators leading to the fully frequency synchronized
state in Fig. 2(d), similarly as observed in [23]. Depending
on the initial conditions the exact structure of the system’s
state can vary, e.g., the size of the nucleus for different σ.
This gives rise to a multitude of stable states for most
values of σ.
The single-step transition is shown in Fig. 1(c).

Regardless of the initial condition, the dynamics follows
very similar paths of the synchronization index. The phase
oscillators organize into a small number of clusters within
each of which all oscillators move with the same mean
phase velocity for small values of σ. Notably, there is no
single cluster at any time that is significantly larger than the
others, in contrast to the multistep transition and prior
findings for multicluster states [40]. Further, for the single-
step phase transition path an intermediate state with S ≈ 0.5
emerges, which is stable for a wide range of coupling
strengths σ. The transition to full frequency synchroniza-
tion occurs discontinuously at σ ≈ 5.35. The formation of
small initial clusters and the intermediate state are shown in
Figs. 2(e)–2(h). The intermediate state (g) consists of
two almost evenly sized clusters (nuclei) that are formed
simultaneously.
Whether the system undergoes a multistep or a single-

step transition path is determined by the particular reali-
zation of the natural frequency distribution, see the insets in
Fig 1(a). Frequency distributions corresponding to multi-
step phase transitions are characterized by a higher density
around the average frequency ω̄ ¼ 0, leading to an initial
cluster with average cluster frequency close to the overall

average frequency of the network. On the other hand,
frequency distributions corresponding to single-step tran-
sitions are characterized by deviations which are concen-
trated away from the average frequency. This leads to local
clusters emerging at low coupling strength around those
seeds. These clusters survive a further increase in coupling
strength entraining further oscillators before, for larger
coupling strength, collapsing into the fully synchronized
state.
The distinction between these two qualitatively very

different scenarios of phase transitions is hence caused by
finite-size-induced inhomogeneities of the natural fre-
quency distribution. The fluctuations in the realization of
the natural frequencies are much more influential than the
choice of initial conditions, see Figs. 1(b) and 1(c). To
further probe that the choice of transition path is indeed a
finite-size effect, we choose equidistantly distributed
frequencies, to remove fluctuations. In this case the
transition path which is taken by the system is determined
instead by the initial condition of the phases, see [56].
Performing a down-sweep from large σ for the given

frequency distributions in Figs. 1(b) and 1(c), hysteresis
and bistability between full and partial cluster synchrony is
observed, see [56].
During the transition to synchrony, oscillators group into

phase-locked clusters. The fluctuations in the realization of
the natural frequencies determine the shapes of the emerg-
ing cluster states which in turn govern the type of transition.
In systems with adaptive coupling weights there are many
ways in which an arbitrary number of oscillators can form a
multicluster structure [40,58]. In the following, we study
the coexistence of multicluster states and show that states
with equally sized clusters are stable for a larger interval in
σ than states with strongly different cluster sizes. For this,
we develop a mean-field description of multiclusters
employing the collective coordinate method introduced
in [59]. The latter has been successfully used to describe the
synchronization of the Kuramoto system for general
frequency distributions [60], complex coupling topologies
[61] and chaotic cluster dynamics [60]. This approach can
capture finite-size effects while still reproducing the find-
ings of mean-field theories [62].
Following [60], we assign each oscillator to one of M

clusters μ of size Nμ ¼ nμN. The phase variables and
coupling variables are written as

ϕiðtÞ ≈ ϕ̂μ
i ðtÞ ¼ ϑμðtÞðωi − ΩμÞ þ fμðtÞ; ð3Þ

κijðtÞ ≈ κ̂μνij ðtÞ ¼ ϰμνðtÞ: ð4Þ
In this ansatz each phase oscillator is parametrized by ϑμðtÞ
describing the spread within the μth cluster with relative
frequencies ðωi −ΩμÞ, where Ωμ ¼ N−1

μ

P
i∈Cμ ωi is the

mean natural frequency of cluster μ with index set Cμ, and
the collective phase fμðtÞ of each respective cluster. The
coupling weights κij are assumed to be constant within each

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Coupling matrices for specific values of σ, correspond-
ing to two different types of synchronization transition. (a)–(d)
multistep, and (e)–(h) single-step transition. The values of σ are
(a) 0.9, (b) 1.05, (c) 1.75, (d) 6.0, and (e) 0.55, (f) 1.75 (g) 2.75,
and (h) 6.0. The snapshots are taken after 104 time units. Other
parameters: ω̂ ¼ 0.25, β ¼ −0.53π, and ϵ ¼ 0.01. Because of the
ϕ → ϕþ π symmetry, κij and −κij are indistinguishable, there-
fore the absolute values jκijj are plotted, see [56].
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cluster and only vary across clusters. Our ansatz (1)–(2)
changes the microscopic description ðϕi; κijÞ to a meso-
scopic description for the clusters with the new collective
coordinates ϑμ, fμ, and ϰμν [63]. This reduces the high-
dimensional system (1)–(2) from N þ N2 to 2M − 1þM2

dimensions.
The equations of motion for the collective coordinates

are obtained by minimizing the error made by the
assumption (3)–(4), see [56,59,62] for details. For simplic-
ity, we restrict ourselves in the following to the description
of two clusters in the continuum limit N → ∞ with fixed
size ratios n1 and n2 ¼ 1 − n1 [64]. We introduce the order

parameter for each cluster rμ ¼ ð1=NÞjPj∈Cμ e
iϕμ

j ðtÞj that in
the continuum limit is approximated by rμ ¼ sin z=z with
z ¼ ϑμnμ=4 [8,59]. The resulting mesoscopic dynamics of
system (1)–(2) is governed by

_ϑμ ¼ 1þ 48σ

n2μϑμ

�
cos

�
ϑμnμ
4

�
− rμ

�

× ½ϰμμnμrμ þ ϰμνnνrν cos f�; ð5aÞ

_f ¼ −
1

4
− σr1r2ðn1ϰ21 þ n2ϰ12Þ sin f; ð5bÞ

_ϰμν ¼ −ϵ½ϰμν þ rμrν sin ðfμ − fν þ βÞ�; ð5cÞ

with μ; ν ∈ f1; 2g, f ¼ f1 − f2 is the phase difference of
the two clusters. See [56] for details.
Figure 3 shows a comparison of the high-dimensional

adaptive Kuramoto system (1)–(2) and the reduced system
(5). We use N ¼ 1000 oscillators with a fixed realization of
natural frequencies to probe the continuum limit (N → ∞)
mean-field approach. For two-cluster configurations with a
varying relative number of oscillators in the first cluster
from n1 ¼ 0.5 to n1 ¼ 0.95, we prepare special initial
conditions that result in the desired state, see [56]. For the
reduced system, we proceed analogously.
Figure 3 shows that the dynamics of the two-cluster state

is captured fully by the collective coordinate framework.
The solid lines (full system) overlap with the dashed lines
(reduced system). The single-step transition, also seen in
Fig. 1(c), is well explained by the merging of two clusters
in the reduced system. In both systems the multicluster
structure ceases to exist beyond a certain coupling strength
σc. The critical values for the onset of cluster σc and full
synchronization σs are well approximated by a perturbative
approach for ϵ ≪ 1 to the reduced system (5). We obtain
σc ≈ 0.460 and σs ≈ 3.152, see [56]. In particular, the
analytic result shows that multicluster states exist only
for an intermediate range of σ, which agrees with the
observations in Fig. 1.
In the inset of Fig. 3 the excellent agreement between the

oscillator phases of the full system and the collective
coordinate ansatz (3) is shown for n1 ¼ 0.5.

Figure 3 shows that two-cluster states in the reduced
system are stable for a much larger interval in σ than in the
full system. This discrepancy may be linked to the
observation that the stability of multicluster states is mainly
determined by intracluster links [65]. Such intracluster
effects are not captured by our mean-field ansatz. However,
the reduced system provides important insights into the
existence of partially synchronized clusters from which the
stability can be studied numerically employing the full
system. This is relevant to the two transition scenarios
observed in Fig. 1: for the reduced two-cluster system the
values for which full synchronization emerges are larger the
more equal the respective cluster sizes are with a maximum
at n1 ¼ n2 ¼ 0.5. Hence a homogeneous collection of
clusters of similar size will remain stable for a wide range
of coupling strengths whereas heterogeneous nucleation
with a dominant initial cluster will entrain further oscil-
lators upon increasing the coupling strength.
In summary, we have shown two qualitatively different

transitions to synchronization induced by the interplay of
an adaptive network structure and finite-size inhomogene-
ities in the natural frequency distributions: single-step and
multistep transitions. The transition through multiclusters
makes these two phenomena different to explosive syn-
chronization reported for systems with single or multiple
adaptive coupling weights [66–68]. In the multistep tran-
sition, a single large cluster (nucleus) forms around an

FIG. 3. Bifurcation diagram for the adaptive Kuramoto model
(1)–(2) (full system) with N ¼ 1000 oscillators (solid lines) and
the reduced system (5) (dashed lines), showing the synchroniza-
tion index S as a function of the coupling strength σ. For the full
system a two-cluster state is initially prepared with a fraction of
n1 oscillators placed in the first cluster, and n2 ¼ 1 − n1
oscillators in the second cluster at σ ¼ 1, for the reduced system
at σ ¼ 0.5 with values of n1 from 0.5 to 0.95 in steps of
Δn1 ¼ 0.05. Additionally the full system is simulated for n1 ¼
1 to visualize hysteresis. The analytical estimates of upper and
lower bounds of two-cluster existence at σS ¼ 3.152 and σC ¼
0.460 are marked on the axis. Inset: oscillator phases ϕi for the
full system vs the approximation ϕ̂μ

i ¼ ϑμωi of the reduced
system for n1 ¼ 0.5 and σ ¼ 2; colors denote the two clusters.
Other parameters: ω̂ ¼ 0.25, β ¼ −0.53π, and ϵ ¼ 0.01.
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inhomogeneity in the frequency distribution and succes-
sively grows until full synchronization is reached. In
contrast, in the single-step synchronization transition,
multiple equally sized clusters (nuclei) form around multi-
ple inhomogeneities, grow, and coexist stably. Each cluster
moves with its mean frequency, which results in a higher
difference of the average phase velocity between the
clusters than between two freely moving oscillators. This
higher difference inhibits the synchronization of the clus-
ters for a significant range in the coupling strengths. Hence,
this explains the observed abrupt first-order transition to
full synchronization for high coupling strengths.
The described nucleation phenomena are very similar to

heterogeneous nucleation induced by local impurities
known, e.g., from cloud formation [69], crystal growth
[70], or Ostwald ripening in equilibrium and nonequili-
brium systems [50]. Because of this relation, our results
provide an intriguing bridge between synchronization
transitions in finite-size dynamical complex networks
and thermodynamic phase transitions where the finite-size
induced inhomogeneities in the natural frequencies take the
role of impurities. Our numerical investigation has been
complemented by a mean-field theory capable of describ-
ing multicluster states in the presence of an arbitrary
frequency distribution and adaptive coupling weights. By
this, we contribute to the research on mean-field models of
coupled phase oscillators [71] where only recently first
steps have been undertaken to include adaptive coupling
[72]. Remarkably, our reduced mean-field model provides
an excellent approximation of the macroscopic multicluster
dynamics as well as the microscopic phase relations. The
multistep transition, with a continually changing size of
the main cluster (nucleus) and the importance of the
stability of each cluster, is only partially captured by the
mean-field approach introduced in this work. This limita-
tion, however, could be overcome by generalizing methods
on partial synchronization in generalized Kuramoto sys-
tems [23,62,73,74].
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