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Real-world datasets characterized by discrete features are ubiquitous: from categorical surveys to clinical
questionnaires, from unweighted networks to DNA sequences. Nevertheless, the most common
unsupervised dimensional reduction methods are designed for continuous spaces, and their use for
discrete spaces can lead to errors and biases. In this Letter we introduce an algorithm to infer the intrinsic
dimension (ID) of datasets embedded in discrete spaces. We demonstrate its accuracy on benchmark
datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting, finding a surprisingly
small ID, of order 2. This suggests that evolutive pressure acts on a low-dimensional manifold despite the
high dimensionality of sequences’ space.
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Data produced by experiments and observations are
very often high dimensional, with each data point being
defined by a sizeable number of features. To the pleasure of
modelers, real-world datasets seldom occupy this high-
dimensional space uniformly, as strong regularities and
constraints emerge. Such a property is what allows for low-
dimensional descriptions of these high-dimensional data,
ultimately making science possible.
In particular, data points are often effectively contained

in a manifold which can be described by a relatively small
number of coordinates. The number of such coordinates is
called intrinsic dimension (ID). More formally, the ID is
defined as the minimum number of variables needed to
describe the data without significant information loss. Its
knowledge is of paramount importance in unsupervised
learning [1–3] and has found applications across disci-
plines. In solid-state physics and statistical physics, the ID
can be used as a proxy of an order parameter describing
phase transitions [4,5]; in molecular dynamics it can be
used to quantify the complexity of a trajectory [6]; in deep
learning theory the ID indicates how information is com-
pressed throughout the various layers of a network [7–9].
During the last three decades much progress has been made
in the development of sophisticated tools to estimate the ID
[10,11], and most estimators have been formulated (and are
supposed to work) in spaces where distances can vary
continuously. However, many datasets are characterized by
discrete features and, consequently, discrete distances. For
instance, categorical datasets like satisfaction question-
naires, clinical trials, unweighted networks, spin systems,
protein, and DNA sequences fall into this category.
Two main methods are usually employed in these cases.

The box counting (BC) estimator [12–14]—which is
defined by measuring the scaling between the number of

boxes needed to cover a dataset and the boxes’ size—
provides good results for two-dimensional to three-
dimensional datasets but is computationally demanding
for higher-dimensional datasets. The second popular method
is the fractal dimension (FD) estimator [12,15,16], and it is
based on the assumption of a power law relationship N ∼ rd

for the number N of neighbors within a sphere of radius r
from a given point, where d is the fractal dimension of the
data. This estimator has been successfully applied, on
discrete datasets, to model the phenomena of dielectric
breakdown [17] and Anderson localization [18]. For non-
fractal objects, both methods are reliable only in the limit of
small boxes and small radii, since the manifold containing
the data can be curved, and the data points can be distri-
buted nonuniformly [19]. However, in discrete spaces such a
limit is notwell defined due to theminimumdistance induced
by any discrete lattice, and this can lead to systematic
errors [20,21].
In this Letter, we introduce an ID estimator explicitly

formulated for spaces with discrete features. In discrete
spaces, the ID can be thought of as the dimension of a
(hyper)cubic lattice where the original data points can be
(locally) projected without a significant information loss.
The key challenge in dealing with the discrete nature of the
data lies in the proper definition of volumes on lattices. To
this end, we introduce a novel method that makes use of
Ehrhart’s theory of polytopes [22], which allows one to
enumerate the lattice points of a given region. By meas-
uring a suitable statistics, depending on the number of data
points observed within a given (discrete) distance, one can
infer the value of the dimension of the region, which we
interpret as the ID of the dataset. The statistics we use is
defined in such a way that density of points is required
to be constant only locally and not in the whole dataset.
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Importantly, our estimator allows one to explicitly select
the scale at which the ID is computed.
Methods.—We assume data points to be uniformly

distributed on a generic domain, and that their density is
ρ. In such domain, we consider a region A with volume
VðAÞ. Since we are assuming points to be independently
generated, the probability of observing n points in A is
given by the Poisson distribution [23]

Pðn; AÞ ¼ ½ρVðAÞ�n
n!

e−ρVðAÞ ð1Þ
so that hni ¼ ρVðAÞ. Consider now a data point i and two
regions A and B, one containing the other, and both
containing the data point i ∈ A ⊂ B. Then the number of
points n and k − n falling, respectively, in A and BnA
are Poisson distributed with rates λ1 ¼ ρVðAÞ and
λ2 ¼ ρVðBnAÞ. The conditional probability of having n
points in A given that there are k points in B is

PðnjkÞ ¼ PðnÞPðk − nÞ
PðkÞ ¼

�
k
n

�
pnð1 − pÞk−n ð2Þ

with

p ¼ λ1
λ1 þ λ2

¼ ρVðAÞ
ρVðBÞ ¼

VðAÞ
VðBÞ : ð3Þ

Thus njk ∼ Binomialðn; k; pÞ. As far as the density ρ is
constant within A and B, p is simply equal to the ratio of the
volumes of the considered regions and, remarkably, density
independent. This is a key property which, as we will show,
allows for using the estimator even when the density is
approximately constant only locally, and varies, even
substantially, across larger distance scales. One can then
write a conditional probability of the observations ni (one
for each data point), given the parameters ki and pi, which
can possibly be point dependent:

Lðnijki; piÞ ¼
YN
i¼1

Binomialðnijki; piÞ: ð4Þ

Such formulation assumes all the observations to be
statistically independent. Strictly speaking this is typically
not true, since the regions A and B of different points can be
overlapping. We will address this issue in the Supplemental
Material [24], demonstrating that neglecting correlations
does not induce significant errors.
The next step consists of defining the volumes in Eq. (3)

according to the nature of the embedding manifold. We
now assume our space to be a lattice where the L1 metric is
a natural choice. In this space the volume VðAÞ is the
number of lattice points contained in A. According to
Ehrhart theory of polytopes [25], the number of lattice
points within distance t in dimension d from a given point
amounts to [26]

V⋄ðt; dÞ ¼
�
dþ t
d

�
2F1ð−d;−t;−d − t;−1Þ ð5Þ

where 2F1ða; b; c; zÞ is the ordinary hypergeometric func-
tion.At a given t, the above expression is a polynomial ind of
order t. As a consequence, the ratio of volumes defining the
value ofp in Eq. (3) becomes a ratio of two polynomials in d.
Given a dataset, the choice of t1 and t2 fixes the values of ni
and ki in the expression for the likelihood. Themaximization
of the likelihood function [Eq. (4)] with respect to d allows
one to infer the data manifold’s ID, which is simply given the
root of equation (see the SupplementalMaterial [24] formore
details on the derivation)

V⋄ðt1; dÞ
V⋄ðt2; dÞ

−
hni
hki ¼ 0 ð6Þ

where the mean value over n and k is intended over all the
points of the dataset. The root can be easily found with
standard optimization libraries. This procedure defines an ID
estimator that, for brevity, we will call I3D (intrinsic
dimension estimator for discrete datasets).
Very importantly, the ID estimate is density independent

as such a factor cancels out [see Eq. (3)]. The error on the
estimator has a theoretical lower bound, given by the
Cramer-Rao inequality, which has an explicit analytic
expression. As an alternative, the ID can be estimated
by a Bayesian approach as the mean value of its posterior
distribution, and the error estimated via the posterior
variance (details in the Supplemental Material [24]).
The estimation of the ID depends on the choice of

the volumes of the smaller and larger regions, which are
parametrized by the “radii” t1 and t2. By varying t2, the
radius of the largest probe region, one can explore the
behavior of the ID at different scales. The proper range of t2
is dataset dependent and should be chosen by plotting the
value of the ID as a function of it, as we will illustrate in the
following. If the dataset has a well-defined ID, one will
observe a (approximate) plateau in this plot. This leaves the
procedure with one free parameter: the ratio r ¼ t1=t2 and
its choice influence the statistical error. In continuous space
the ratio between volumes in Eq. (3) is simply p ¼ rd, and
the Cramer-Rao variance has a simple dependence on the
parameter r. By minimizing it with respect to r, one obtains
that the optimal value for the ratio is ropt ∼ 0.2032ð1=dÞ (see
the Supplemental Material [24]).
In order to check the goodness of the estimator, we test

whether the number of points n contained within the
internal shells is actually distributed as a mixture of
binomials, as our model assumes:

PðnÞ ¼
X
k

PðkÞB
�
n; k;

V⋄ðt1; dÞ
V⋄ðt2; dÞ

�
ð7Þ

where PðkÞ is the empirical probability distribution of k
found by fixing t2. In the following we will compare the
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empirical cumulative distribution of n to the cumulative
distribution of PðnÞ.
Results: Uniform distribution.—We tested the I3D esti-

mator on artificial datasets, and compared it against the two
aforementioned methods: the box counting and the fractal
dimension (FD). The BC estimate of the ID is obtained by a
linear fit between the logarithm of the number of occupied
covering boxes and the logarithm of the boxes’ side.
Seemingly, for the FD, the linear fit is computed among
the logarithm of the average number of neighbors within a
given radius and the logarithm of the radius. In both cases,
the scale reported in the figures is given by the largest box
or radius included in the fit. We started by analyzing
uniformly distributed points in 2D and 6D square lattices.
We adopted periodic boundary conditions in order to
reduce boundary effects as much as possible. For the
I3D estimator, in this and all following cases, we set
t1=t2 ¼ r ¼ 0.5. The results are shown in Fig. 1. While the
BC and FD proved to be reliable in finding the fractal
dimension of repeating, self-similar lattices [12,17], they do
not manage to assess the proper dimension of randomly
distributed points, especially at small scales. The I3D
estimator, instead, returns accurate values for the ID at
all scales and, importantly, provides the correct estimate
also on self-similar lattices (see the Supplemental Material
[24]). Remarkably the I3D estimator allows one to select
the scale explicitly by varying the radius t2. In the lower
panels of Fig. 1, we also report a first example of model
validation for I3D. The two cumulative distribution func-
tions [empirical and theoretical one, according to Eq. (7)]
perfectly match, meaning that the ID estimation is reliable.

Gaussian distribution.—Secondly, we tested the estima-
tors on Gaussian distributed points in five dimensions,
analyzing a case in which the data are uncorrelated and a
case in which a correlation is induced by a nondiagonal
covariance matrix. In both cases, we set diagonal elements
of the covariance matrix to σ ¼ 5 (implying an effective
standard deviation of the distribution of σeff ¼

ffiffiffi
d

p
σ), while

off diagonal terms—for correlated data—were uniformly
extracted in the interval (0,2). The values were chosen in
order to keep the dimension of the dataset under control, as
correlations of the same order of the diagonal would reduce
the dimensionality of the dataset. The points were projected
on a lattice by taking the nearest integer in each coordinate.
As one can observe in panel (a) of Fig. 2, I3D is accurate as
far as it explores a neighborhood where the density
does not vary too much (namely, as far as t2=σeff ≲ 1).
Correspondingly, empirical and model cdfs in panel (b) are
superimposed. Beyond such distance, neighborhoods are
characterized by nonconstant density; consequently, esti-
mates get less precise and, accordingly, the two cdfs show
inconsistencies (panel (c): t2=σeff ∼ 1.5). On the other hand,
the BC and FD estimations are far from desired values at any
scales, for both correlated and uncorrelated cases.
Spin dataset.—As a third test, we created synthetic

Ising-like spin systems with a tunable ID, which is given
by the number of independent parameters used to generate
the dataset. The 1D ensemble is obtained by generating a
set of points belonging to a line embedded in RD with the
process φi ¼ φ0 þ αϵðiÞ. Here, α is a fixed random vector
of unitary norm with uniformly distributed components,
and φ0 ¼ −0.5 is the y intercept that, for simplicity, is
equal for all the components; ϵi are Gaussian distributed,
ϵ ∼N ð0; 10Þ, and independently drawn for each sample i.
We then proceed to the discretization by extracting the
zi ¼ signðφiÞ, an ensemble of N states of D discrete spins.
The pipeline is summarized in Fig. 3. The role of φ0 is to
introduce an offset in order to enhance the number of the

FIG. 1. Performance of I3D, BC, and FD estimators for points
uniformly distributed on a square lattice of size 50 in 2D and size
20 in 6D. Datasets were obtained by sampling, respectively, 20
realizations of 2500 and 100 000 points. Error bars are given by
the standard deviation over the different realizations. Lower
panels: I3D model validation performed by comparing empirical
and theoretical cdfs of the random variable n.

FIG. 2. ID estimations of I3D, BC, and FD on 20 realizations of
2500 points drawn from a Gaussian distribution in 5D and
projected on a lattice (a). Solid lines with markers are related to
diagonal covariance matrix, dashed lines to the nondiagonal case.
Panels (b) and (c) show, respectively, I3D model validation at
small and large scales.
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reachable discrete states. In fact, for φ0 ¼ 0, we would
obtain only two different states, given by z ¼ signðαϵÞ ¼
�signðαÞ, since the spins would change sign synchro-
nously. An offset ≠ 0 allows the angles φi and the spins zi
to shift sign in an asynchronous way. The extension
to higher dimensions is straightforward and consists of
generating the initial points as φi ¼ φ0 þ

P
id
j¼1 αjϵjðiÞ,

with αj · αk ∼ δjk. Because of the nature of data domain (a
D-dimensional hypercube with side 1), the BC cannot be
applied, as boxes with side larger than 1 would include the
whole dataset. FD and I3D estimates for the 1D system are
very close. This is not surprising as both continuous and
discrete volumes (and, consequently, the neighbors) scale
linearly with the radius. In the 2D case, I3D clearly
outperforms the other methods, although even the best
estimate remains slightly lower than the true value. This
effect, due to nonuniform density, is relatively small, and
indeed the empirical and theoretical cdfs are rather con-
sistent [panels(b) and (c)]. Such an effect becomes more
important as the dimension rises (see the Supplemental
Material [24] for examples in d ¼ 3 and d ¼ 4).
16S Genomics strands.—Lastly, we present the appli-

cation of our methodology to a real-world dataset in the
field of genomics. The dataset consists of DNA sequences
of ∼100–300 nucleotides. We selected a dataset down-
loaded from the Qiita server ([27]) [28]. In such a study,
they sequenced the v4 region of the 16S ribosomal RNA of
the microbiome associated with sponges and algal water
blooms. This small subunit of rRNA genes is widely used
to study the composition of microbial communities
[29–32]. Hamming distance and the binary mapping
A∶11; T∶00; C∶10, and G∶01 were used to compute
sequences’ distance. The canonical letter representation
leads to almost identical results (see the Supplemental

Material [24]). To avoid dealing with isolated sequences,
we kept only sequences having at least ten neighbors within
a distance of 10. Sequences come with their associated
multiplicity, related to the number of times the same read
has been found in the samples. We ignore such degeneracy
and compute an ID which describes just the distribution of
the points regardless of their abundance.
To begin with, we estimated the ID on a subset of

sequences that are similar to each other. In order to find
such sets, we perform a k-means clustering and calculate
the ID separately for each of them. Panel (a) in Fig. 4 shows
the ID at small to medium scale for one such cluster. The
empirical and reconstructed cdfs, performed at t2 ¼ 20 (see
inset), are fairly compatible. Panel (b) shows the average
and the standard deviation of the ID of all clusters
(weighted according to the respective populations). One
can appreciate that the ID is always between 1 and 3 in a
wide range of distances, showing a plateau around 2
for 15 < t2 < 40.
Such a low value for the ID is an interesting and

unexpected feature, as it suggests that, despite the high-
dimensionality of sequences’ space, evolution effectively
operates in a low-dimensional space. Qualitatively, an
ID ∼ 2 on a scale of ∼20 means that if one considers all
the sequences differing by approximately 20 mutations
from a given sequence, these mutations cannot be regarded
as independent one from each other, but are correlated in
such a way that approximately 18 degrees of freedom are
effectively forbidden. The “direction” of these correlated
mutations can be, at least approximately, measured by
performing PCA in the space of sequences with the binary
mapping. The first two dominant eigenvectors, shown in
panel (c), were estimated using all the sequences within a

FIG. 3. (a) The pipeline used to create an ensemble of binary
spins with a low ID, together with the results of FD and I3D
estimators on 1D and 2D datasets. I3D estimations were validated
by comparing theoretical and empirical cdfs [panels (b) and (c)].

FIG. 4. Estimated ID at small to medium distances for one of
the clusters of the genomics dataset [panel (a)]. The inset reports
the fair superposition of empirical and modeled cdfs of n. Panel
(b) shows average and standard deviation of the IDs estimated
separately for each cluster. Panel (c) shows first and second
principal component analysis (PCA) eigenvectors of the data
points within given distances t2 (20 or 30) from the center of the
cluster used for panel (a).
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distance of 20 (top) and 30 (bottom) from the center of the
cluster of panel (a). Remarkably, the eigenvectors do not
change significantly on this distance range, indicating that,
consistently with the low value of the ID, the data manifold
on this scale can be approximately described by a two-
dimensional plane. In order to provide an interpretation of
the vectors defining this plane, we repeated this same
analysis on the previously mentioned spin model. In this
case, if the generative model is defined by two vectors α1
and α2, the first two dominant eigenvectors of a PCA
performed on ∼1000 points are contained in the span of the
two generating vectors, with a residual of 0.04 (see the
Supplemental Material [24] for details). The components of
a vector α can then be qualitatively interpreted as propor-
tional to the mutation probabilities of the associated
nucleotide for a collective mutation process. In the
genomics dataset this reasoning can applied only locally:
the direction of correlated mutation is significantly different
in different clusters, indicating that the data manifold is
highly curved.
Conclusions.—We presented an ID estimator formulated

to analyze discrete datasets. Our method relies on few
mathematical hypotheses and is asymptotically correct if
the density is constant within the probe radius t2. In order to
prove the estimator’s effectiveness, we tested the algorithm
against three different artificial datasets and compared it to
the well known box counting and fractal dimension
estimators. While the last two performed poorly, the new
one achieved good results in all cases, providing reliable ID
estimations corroborated by the comparison of empirical
and model cumulative distribution functions for one of the
observables. We finally applied the estimator on a
genomics dataset, finding an unexpectedly low ID which
hints at strong constraints in the sequences’ space, and then
exploited such information to give a qualitative interpre-
tation of such ID. The newly developed method paves the
way to push the investigation even further, toward the
extension to discrete metrics of distance-based algorithms
and routines that are, nowadays, consolidated in the
continuum, such as density estimation methods, or cluster-
ing algorithms.

The supporting data for this Letter are openly available
from [33].
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