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We consider fluctuation-dissipation relations (FDRs) for a Brownian motion under renewal resetting
with arbitrary waiting time distribution between the resetting events. We show that if the distribution of
waiting times of the resetting process possesses the second moment, the usual (generalized) FDR and the
equivalent generalized Einstein’s relation (GER) apply for the response function of the coordinate. If the
second moment of waiting times diverges but the first one stays finite, the static susceptibility diverges, the
usual FDR breaks down, but the GER still applies. In any of these situations, the fluctuation dissipation
relations define the effective temperature of the system which is twice as high as the temperature of the
medium in which the Brownian motion takes place.
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Random processes under resetting have found applica-
tions for the description of various phenomena and proc-
esses in physics, chemistry, biophysics and biochemistry, in
biology (e.g., in movement ecology), and also in computer
science, see Refs. [1–3] for a review. A beautiful intro-
duction is also given in the beginning of Ref. [4]. The
topic of resetting is therefore currently under extensive
investigation.
A random process under resetting (a reset process) is a

combination of two random processes: the continuous-time
displacement process xðtÞ between resetting events, and a
resetting process ftig, a point process on a non-negative
real time line. In the simplest situation considered here, at
t ¼ ti the coordinate xðtÞ is set back to x ¼ x0. The time-
dependent coordinate of a reset process stemming from the
displacement process xðtÞwill be denoted by XðtÞ. For non-
Markovian displacement processes, the resetting of the
coordinate may or may not be accompanied by erasing the
internal memory of xðtÞ [5–7]. In the first case one speaks
about the complete resetting, in the second case the
resetting is incomplete. Incomplete resetting is also pos-
sible for a Markovian displacement process with more than
one relevant variable [i.e., for vector-valued xðtÞ]: some
coordinates are reset, while other ones stay unaffected by
the resetting event.
Some systems pertinent to physics or chemistry allow for

manipulation of the displacement process by application of
an external force F (which is easy, e.g., in colloidal
systems). Experimental realizations of the resetting scheme
in such systems were discussed in [8–10], and therefore the
response of such a process to external forcing is amenable
to experimental investigation. In what follows, we consider
the simplest case when the displacement process is a one-
dimensional Brownian motion (which only allows for

complete resetting). Brownian motion (BM) under
Poissonian resetting was the very first example, Ref. [11],
which provoked thewholewave of interest to reset processes.
At difference with [11], we consider the resetting process to
be a generic ordinary renewal process with a continuous
waiting time density ψðtÞ which is not necessarily exponen-
tial. The process starts with a resetting event at t0. Our
example is indeed simple but far from trivial.
Brownian motion is a nonstationary Markov process

with stationary increments. Resetting may transform this
nonstationary process into a stationary reset one, possess-
ing a nonequilibrium steady state (NESS). This state is far
from thermodynamic equilibrium (see, e.g., the discussion
in Ref. [12]), and violates the time-reversal symmetry
being a key property of the equilibrium state. Since the
time-reversal symmetry, or, equivalently, the detailed bal-
ance condition, is often considered as a cornerstone of
linear response theory and fluctuation-dissipation relations
(FDRs), a question arises, what kinds of FDRs, if any, are
valid for reset processes.
The situation under resetting is close to many other cases

for FDRs in a NESS (see Refs. [12–15] for discussions),
but has some specific features due to the fact that there is no
general way to define the Hamiltonian of the whole system
including an appliance (or a physical person, or a demon)
performing the resetting. The general resetting scheme also
precludes using approaches based on Fokker-Planck equa-
tions ([16,17], see Ref. [14] for more discussion) which
cannot be put down for such schemes. The pathway to the
FDR (of a rather naive sort) not relying on these types of
description is given in the Supplemental Material (SM)
[18]. The discussion of our simple example therefore
sheds light not only on some intrinsic properties of reset
processes, but also on some properties of FDRs out of
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equilibrium, which, up to my best knowledge, were not
reported so far.
Linear response.—A linear response of the variable V to

an external force F means that its mean value is a linear
functional of F:

hVðtÞi ¼
Z

t

t0

dt0χ�ðt; t0; t0ÞFðt0Þ: ð1Þ

The variable V is centered in such a way that hVi vanishes
in the absence of the force. The response is defined by a
kernel χ�ðt; t0; t0Þ of a general form, and may bear the
dependence on the preparation time t0 even if the system
itself does not show any physical aging. If the system’s
properties do not change with time, the response is sta-
tionary; the kernel (the response function) does not depend
on t0, and is only a function of t − t0,

hVðtÞi ¼
Z

t

t0

dt0χðt − t0ÞFðt0Þ: ð2Þ

This is exactly the form of response shown by systems
close to equilibrium, in which case one can shift t0 → −∞.
The static susceptibility Ξ of the system, describing its
long-time response to a constant force, hVi ¼ ΞF, is given
by Ξ ¼ R∞

0 χðtÞdt, provided the integral converges. If it
diverges, the response hVi to the constant force grows
indefinitely in time. We will call the first kind of response
“elastic,” and the second one “fluid.”
The response relations, Eq. (2), with t0 → −∞ are well

known, e.g., from the electrodynamics of media, and come
essentially in two different types: as a relation between the
thermodynamically conjugated coordinate and force, like
the relation between the dielectric polarization P and the
electric field E in a dielectric, or as the relation between the
thermodynamic flux and the force, e.g., Ohm’s law, i.e.,
the relation between the electric current j and the electric
field E in a conductor. Thermodynamically, these relations
have a different background, since in the first case a state of
the system attained after long time under action of a
constant field is a new equilibrium state, while in the
second case it is a NESS. The corresponding FDRs are
termed to be of the first and of the second kind, respectively
[29]. In the classical setting, both kinds of FDRs can be
considered within a unified framework [14].
If the form of the linear response, Eq. (2), is assumed or

proven, the properties of response functions can be con-
nected with the ones of spontaneous fluctuations in the
absence of the perturbation. To do so one considers special
forms of time dependence of the force, e.g., the force
switched off at some time Toff , FðtÞ ¼ F−ΘðToff − tÞ, or a
force switched on at time Ton, FðtÞ ¼ FþΘðt − TonÞ.
An example of the FDR of the first kind is the relation

hVðtÞjF−i ¼
F−

kBT
CVVðtÞ; ð3Þ

which holds for t > 0. Here hVðtÞjF−i is the mean value of
VðtÞ for a system, which was at equilibrium under the
action of the constant force F− switched off at Toff ¼ 0, and
the correlation function CVVðtÞ ¼ hVðt0ÞVðt0 þ tÞi is cal-
culated at equilibrium in the absence of the force. This
relation immediately follows from the Onsager’s regression
principle [30], see Ref. [14] for a detailed discussion.
Equation (3) implies that after switching off the force one

has hVðtÞjF−i ¼ F−
R
0
−∞ χðt − t0Þdt0 ¼ F−

R
∞
t χðt00Þdt00

with t00 ¼ t − t0. Denoting ΞðtÞ ¼ R
t
0 χðt0Þdt0 we may write

Eq. (3) as Ξ − ΞðtÞ ¼ ð1=kBTÞCVVðtÞ with Ξ ¼ Ξð∞Þ.
This allows for obtaining a relation between the response
function and the autocorrelation function CVV :

χðtÞ ¼ −
1

kBT
d
dt

CVVðtÞ: ð4Þ

The assumption of finite static susceptibility is crucial since
hVðtÞjF−i is otherwise undefined.
The FDR can be put in a different form, connecting the

response with a mean squared displacement (MSD) of V
from its initial value, hΔV2ðtÞi≡ h½VðtÞ − Vð0Þ�2i, in the
absence of the force. Let us consider the response of V to
the force switched on at Ton ¼ 0. Now, hVðtÞjFþi ¼
Fþ

R
t
0 χðt − t0Þdt0. Using Eq. (4) we get hVðtÞjFþi ¼

−Fþ
R
t
0ð1=kBTÞðd=dt0ÞCVVðt0Þdt0 ¼ ðFþ=kBTÞ½CVVð0Þ −

CVVðtÞ�. Since the MSD during time t in a stationary
process is hΔV2ðtÞi¼h½VðtÞ−Vð0Þ�2i¼hV2ðtÞiþhV2ð0Þi−
2hVðtÞVð0Þi¼2CVVð0Þ−2CVVðtÞ, we get

hΔVðtÞjFþi ¼
Fþ
2kBT

hΔV2ðtÞjF ¼ 0i: ð5Þ

This relation will be called the generalized Einstein’s
relation (GER) in what follows. The expression for the
response function via the fluctuations then reads χðtÞ ¼
ð1=2kBTÞðd=dtÞhΔV2ðtÞjF ¼ 0i.
The reason to call the relation Eq. (5) the generalized

Einstein’s relation is as follows. The Einstein’s relation
connects the mobility μ of a particle in a quiescent fluid
with its diffusion coefficient D,

μ ¼ 1

kBT
D; ð6Þ

and was the very first example of the fluctuation-dissipation
relation (of the second kind). The mobility of the particle in
a fluid medium describes the response of its mean velocity
to the external force, hvi ¼ μF. The response of the
particle’s coordinate to the force Fþ switched on at Ton ¼
0 is hΔxðtÞjFþi ¼ μFþt. The diffusion coefficient, on the
other hand, defines the MSD of the particle from its
initial position, hΔx2ðtÞi ¼ 2Dt (here in one dimension).
From these expressions it follows that hΔxðtÞjFþi ¼
ðFþ=2kBTÞhΔx2ðtÞjF ¼ 0i, having the same form as our
GER, Eq. (5).
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Now let us turn to our process under resetting and
calculate hΔXðtÞjFþi and hΔX2ðtÞi for this process. Before
doing so we need some preparative work.
Some conditional and joint probability densities for

renewals.—We assume the resetting process to start at
t0 ¼ 0, and consider two measurement times, t1 and t2, so
that 0 < t1 < t2. Let t− be the last resetting time preceding
t1 (it might well coincide with t0) and tþ be the time of the
last resetting preceding t2 (this may well coincide with t−),
see Fig. 1, and let tf be the time of the first renewal
after t1 (the forward recurrence time). We now calculate the
probabilities and the probability density functions (PDFs)
needed for our discussion following the pattern outlined in
[5–7]. The explicit calculations and proofs are given
in [18].
First we calculate pfðtfjt1Þ, the PDF of the forward

recurrence time conditioned on t1. Let the last rene-
wal before t1 take place at t−. Then pfðtfjt1Þ ¼R t1
0 kðt−Þψðtf − t−Þdt−, where kðtÞ is the time-dependent
rate of renewals, so that kðtÞdt is a probability that a
renewal event took place between t and tþ dt. The rate of
renewals (the intensity of the point process) at time t is
kðtÞ ¼ δðtÞ þ ψðtÞ þ ½ψ � ψ �ðtÞ þ � � � (with star denoting
the convolution), which follows from the fact that this
renewal may be a zeroth, first, second one, etc., and these
events are mutually excluding. This rate is time dependent
unless the renewal process is a Poissonian one.
The probability that tf is larger than t2 [i.e., the

probability that no resetting takes place between t1
and t2, P0ðt2; t1Þ] is then P0ðt1;t2Þ¼

R
∞
t2
pfðtfjt1Þdtf¼R

∞
t2
dtf

R t1
0 dt−kðt−Þψðtf−t−Þ¼

R t1
0 dt−kðt−Þ

R
∞
t2
ψðtf−t−Þdtf,

so that we get P0ðt2; t1Þ ¼
R t1
0 dt−kðt−ÞΨðt2 − t−Þ with

ΨðtÞ ¼ R∞
t ψðt0Þdt0 being the survival probability in a

resetting process.
Now we calculate the joint PDF of t− and tþ provided

there was at least one renewal on the interval between t1

and t2. The overall situation is as follows: There was a
renewal at t−, then t1 comes, then we have a renewal
at tf, then maybe further renewals [following at the
rate kðt − tfÞ] until the last renewal at tþ, and then no
renewals until t2, so that pðt−; tþjt1; t2Þ ¼ Θðt1 − t−Þ×R t2
t1 dtfkðt−Þψðtf − t−Þkðtþ − tfÞΨðt2 − tþÞΘðtþ − tfÞ. The
Heaviside Θ functions denote the facts that t− must precede
t1 and tþ cannot precede tf. The last one indicates that the
integral in tf goes essentially up to tþ:

pðt−; tþjt1; t2Þ ¼ Θðt1 − t−Þkðt−Þ

×
Z

tþ

t1

dtfψðtf − t−Þkðtþ − tfÞΨðt2 − tþÞ:

ð7Þ

This density is nonproper, since its integral over the two
variables t−; tþ is 1 − P0. By taking the corresponding
integrals of the joint density, Eq. (7), we obtain marginal
probability densities p�ðt�jt1; t2Þ for tþ and t−, see
Ref. [18] for details.
For the case of an equilibrated resetting process, which

will be of importance in what follows, there exists a finite
limiting value k ¼ limt→∞kðtÞ ¼ hτi−1 > 0, with hτi being
the mean waiting time for the resetting events; the equa-
tions simplify, and for t1 ≫ hτi one obtains

P0ðt1; t2Þ ¼ k
Z

t1

0

Ψðt2 − t0Þdt0;

pþðtþjt1; t2Þ ¼ kΨðt2 − tþÞΘðtþ − t1Þ;
p−ðt−jt1; t2Þ ¼ kΘðt1 − t−Þ½Ψðt1 − t−Þ − Ψðt2 − t−Þ�: ð8Þ

Now we return to our reset process.
Linear response under resetting.—First we show that the

reset process inherits the linearity of response from the
displacement process. To see this it is enough to note that
the mean position in the reset process is equal to the
particle’s mean displacement since the last renewal.
Therefore, if the mean displacement hxðtÞi is given by
Eq. (2) with VðtÞ ¼ xðtÞ and the response function χdðtÞ,
the mean position at time t under the action of the time-
dependent force for the reset process is

hXðtÞi ¼
Z

t

t0

dt−pbðt−jtÞ
Z

t

t−

χdðt − t0ÞFðt0Þdt0: ð9Þ

Here pbðt−jtÞ is the backward recurrence PDF (i.e., the
PDF of the last renewal before time t) which is given
by pbðt−jtÞ ¼ kðt−ÞΨðt − t−Þ.
Thus, hXðtÞi is a linear functional of the force.

Interchanging the sequence of integrations in t0 and t−,
one obtains hXðtÞi ¼ R

t
t0
dt0 Fðt0Þχdðt − t0Þ R t0

t0
pbðt−jtÞdt−

defining the response of a general type, Eq. (1), with
χ�ðt; t0; t0Þ ¼ χdðt − t0Þ R t0

t0
pbðt−jtÞdt−. To check, whether

FIG. 1. Different realizations of the reset process. The two
panels show the two mutually excluding situations: In the
realization shown in the upper panel, no resetting event takes
place between t1 and t2. In the realization shown below, the first
resetting event after t1 took place at time tf and the last resetting
event preceding t2 at time tþ. The time t− is the time of the last
resetting before the beginning of observation.
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this response gets time-homogeneous in the limit when the
lag between the preparation and the observation times gets
long enough [i.e., that the function χ�ðt; t0; t0Þ gets to be a
function of Δt ¼ t − t0 only], one has to discuss the
properties of the integral Iðt; t0; t0Þ ¼

R
t0
t0
pbðt−jtÞdt− for

fixed t0 and for t → ∞ with Δt fixed. As we show in [18],
the response is time-homogeneous if the resetting process
equilibrates. The two sufficient conditions for this are as
follows: The resetting times are not the multiples of some
given time (like for resetting at a constant pace), and the
mean waiting time hτi is finite. In this case kðtÞ stagnates,
and Eqs. (8) apply. For the reset BM with χdðtÞ ¼ μ the
response function is then given by

χðtÞ ¼ μk
Z

∞

t
Ψðt0Þdt0:

To check whether response to the external force is elastic
or fluid, one investigates the integrability of χðtÞ. It is
integrable provided the second moment hτ2i of the waiting
time exists, since

R∞
0 dt

R∞
t Ψðt0Þdt0 ¼ 1

2
hτ2i.

As we show in [18], for the Brownian motion biased by a
constant force F the stationary PDF of displacements exists
under the same conditions under which the response is
time-homogeneous. This PDF is given by

WðXjFÞ ¼ k
Z

∞

0

Ψðt0Þffiffiffiffiffiffiffiffiffiffiffiffi
4πDt0

p e−
ðX−μFt0Þ2

4Dt0 dt0; ð10Þ

which is a special case of Eq. (2.41) of Ref. [1]. Calculating
the moments hXjF−i ¼ μkF−

R
∞
0 t0Ψðt0Þdt0 ¼ 1

2
μkF−hτ2i

and hX2i ¼ kDhτ2i we see that both diverge when the
second moment of waiting time diverges, i.e., in the case of
fluid response. This precludes applicability of the standard
FDR for this case. However, if we consider a situation when
the force Fþ is switched on at time Tþ ¼ t1 and the
displacement of the particle ΔXðt1; t2Þ ¼ Xðt2Þ − Xðt1Þ is
measured at time t2 > t1, the first two moments of this
displacement, hΔXðt1; t2ÞjFþi and hΔX2ðt1; t2ÞjF ¼ 0i,
stay finite as long as the mean waiting time hτi exists.
These first two moments of displacement in the reset BM
can be calculated explicitly as functions of t1 and t2 [18]:

hΔXjFþi ¼ μFþ

�
ΔtP0ð::Þ þ

Z
t2

t1

dtþðt2 − tþÞpþð::Þ
�

hΔX2i0 ≡ hΔX2jF ¼ 0i ¼ 2D

�
ΔtP0ð::Þ

þ
Z

t2

t1

dtþðt2 − tþÞpþð::Þ

þ
Z

t1

0

dt−ðt1 − t−Þp−ð::Þ
�

ð11Þ

with Δt ¼ t2 − t1 and the expressions for P0ðt1; t2Þ and
p�ðt�jt1; t2Þ given by Eqs. (8). Moreover, under the

same condition, limits of both hΔXðt1; t2ÞjFþi and
hΔX2ðt1; t2ÞjF ¼ 0i for t1 → ∞ and t2 ¼ t1 þ Δt stay
finite and get to be functions of Δt only, see Ref. [18]
for details:

hΔXðΔtÞjFþi¼μFþk
�
Δt

Z
∞

Δt
Ψðt0Þdt0 þ

Z
Δt

0

t0Ψðt0Þdt0
�

hΔX2ðΔtÞi0¼4Dk

�
Δt

Z
∞

Δt
Ψðt00Þdt00 þ

Z
Δt

0

t00Ψðt00Þdt00
�
:

ð12Þ

Thus,

hΔXðΔtÞjFþi ¼
μFþ
4D

hΔX2ðΔtÞjF ¼ 0i ð13Þ

for any time lag Δt. If we assume that the Einstein’s
relation, Eq. (6), holds for the BM, Eq. (13) represents the
GER, Eq. (5)

hΔXðΔtÞjFþi ¼
Fþ
4kBT

hΔX2ðΔtÞjF ¼ 0i: ð14Þ

This form of the GER implies that the effective temperature
of the reset BM as defined via the FDR, see Ref. [31] for the
discussion, is always twice the temperature of the medium
in which the BM takes place. Equation (14) holds inde-
pendently of the shape of ψðtÞ and on whether the response
is elastic or fluid. This is due to a remarkable compensation
effect: while in the fluid case for longer t1 the variance hX2

1i
grows, the probability of having a renewal between t1 and
t1 þ Δt tends to zero due to aging, so that the scenario
shown in the lower panel in Fig. 1 gets less and less
probable [18].
We also note that in the case when the response is fluid,

the GER does not correspond to a FDR of the second kind:
Using Eq. (13) we get hvðΔtÞjFþi ¼ ðd=dΔtÞhΔXjFþi ¼
kμFþ

R∞
Δt Ψðt00Þdt00, and see that the velocity shows an

unusual response to the force. For longer Δt, the velocity
tends to zero, independently on whether the response is
elastic or fluid.
To understand the GER, Eq. (14), one considers the

variable Y conjugated to the force in our reset process. This
is defined by [18]

YðXÞ ¼ lim
F→0

1

WðXj0Þ
∂

∂F
WðXjFÞ: ð15Þ

Using Eq. (10) we obtain Y ¼ ðμX=2DÞ ¼ ðX=2kBTÞ. The
GER for this conjugated variable hΔYðΔtÞjFþi ¼
ðFþ=2ÞhΔY2ðΔtÞjF ¼ 0i corresponds to Eq. (13) for the
response variable X. Therefore, in the case of elastic
response, Eq. (14) corresponds to a standard out-of-
equilibrium FDR.
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Our calculations, however, showed that Eq. (13) is still
valid in the domain of fluid response, where the stationary
PDF does not possess moments. This indicates that for
nonequilibrium systems the GERs may have a larger
domain of applicability than the usual FDRs. This issue
definitely deserves further investigation.
Summary and outlook.—Let us summarize our findings.

A Markovian process under complete renewal resetting
inherits linear response from the displacement process. For
the reset Brownian motion, the corresponding response
fulfills the usual FDR for the case when the resetting
process possesses a finite second moment for its waiting
times. If the second moment diverges but the first moment
still exists, the standard FDR is not applicable, but the
generalized Einstein’s relation still holds. The effective
temperature of the reset Brownian motion, as defined via
the fluctuation-dissipation relation, is universally twice as
high as the temperature of the medium in which the motion
takes place.
These results can be experimentally tested within the

colloidal setup of [8] with small passive colloids perform-
ing Brownian motion, where the external forcing may
correspond to a slow flow in suspending fluid. In the
present Letter only the case of immediate resetting, i.e., fast
return to the origin, is considered, and therefore the
resetting procedure must be fast, or, alternatively, the return
times must be censored from data. A two-dimensional
variant of our model may be used for the discussion of reset
motion of massive colloids (two variables, position and
velocity), and two-dimensional variants of simple diffusion
(akin to the experiment [8]) with complete or incomplete
resetting. For measurements including return times, a more
complicated, two stage model of the displacement process
taking into account the motion on return with constant
speed or under the action of the constant force, see, e.g.,
[32], must be used, for which the discussion of the FDRs is
still missing.
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