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We propose a non-Hermitian generalization of the correspondence between the spectral flow and the
topological charges of band crossing points (Berry-Chern monopoles). A class of non-Hermitian
Hamiltonians that display a complex-valued spectral flow is built by deforming an Hermitian model
while preserving its analytical index. We relate those spectral flows to a generalized Chern number that we
show to be equal to that of the Hermitian case, provided a line gap exists. We demonstrate the homotopic
invariance of both the non-Hermitian Chern number and the spectral flow index, making explicit their
topological nature. In the absence of a line gap, our system still displays a spectral flow whose topology can
be captured by exploiting an emergent pseudo-Hermitian symmetry.
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Non-Hermitian topology [1–3] is an emergent topic
stimulated by the rise of topological physics in various
quantum and classical physical systems [4–9] that display—
naturally or on purpose—non-Hermitian effects [10–15].
Protected boundary states being certainly one of the most
universal signatures in topological physics, the question of
their existence in non-Hermitian systems has naturally led to
numerous studies during thepast fewyears. This central issue
of the bulk-boundary correspondence is, however, quite
involved in non-Hermitian systems. The reason being that
the spectrumof the periodic system fromwhich a topological
index is usually computed, and that of the system with open
boundary conditions, can be totally distinct [16,17]. In
particular, eigenstates of non-Hermitian open systems
were found to be localized near the boundary, in contrast
with Bloch waves of Hermitian models. This so-called
non-Hermitian skin effect [18] motivated the development
of a non-Bloch bulk-boundary correspondence, where a
generalized Brillouin zone is introduced to define the
proper topological invariants in relation with the boundary
states [18–23]. The calculation of this non-Hermitian
Brillouin zone is, however, quite involved in itself, although
recent analytical advances have been made to evaluate it in
one dimension [24]. Another approach consists of consid-
ering a complete biorthogonal basis, made of left and right
eigenstates of the non-Hermitian Hamiltonian in order to
introduce a biorthogonal polarization that accounts for the
appearance or disappearance of singular edge modes in non-
Hermitian systems with open boundaries [25–29].
Instead of focusing on lattice problems and trying to adapt

topological Bloch theory to the non-Hermitian realm, we
address the issue of the non-Hermitian generalization of the
correspondence between spectral flows and Berry-Chern
monopoles, which are the topological charges associated
to band crossing points [30–33]. In contrast with the bulk-
boundary correspondence, the monopole-spectral flow

correspondence does not involve open boundary conditions,
but requires instead a variation in space of a physical
quantity, such as a mass term or a vector potential.
Moreover, when such a quantity varies linearly along a
spatial direction—say x—all the “bulk” states are already
localized around x ¼ 0 in the Hermitian case.
Berry-Chern monopoles are abundant in physics and their

associated spectral flows have different physical interpreta-
tions depending on the system at hand. For instance, they
arise in the low energy description of smooth interfaces
between topologically distinct two-dimensional (2D) topo-
logical insulators [31,34,35] and metals [36], they allow a
suitable description of topological waves in various inho-
mogeneous continuous media [6,37–42], they account for
the topological reorganization of quantum levels in mole-
cules [43–46], and they also characterize the topology of 3D
Weyl semimetals [47,48] and their generalizations [49,50].
Despite its ubiquity, the question of the monopole-

spectral flow correspondence has been overlooked in the
context of non-Hermitian physics, leaving us with the
following key questions: Does the spectral flow survive
non-Hermiticity? Is the correspondence between the spec-
tral flow and the topological charge still valid, or does it
break like the bulk-edge correspondence? In this Letter, we
show how to construct a class of non-Hermitian models that
preserve the spectral flow. We then show how to extend its
topological description, and build different mappings to
relate it with the Berry-Chern monopoles of Hermitian
models.
To do so, let us consider the generic twofold band

crossing Hamiltonian with a linear dispersion relation in the
three directions λ, x, and p

H0½λ; x; p� ¼
1ffiffiffi
2

p
�

λ x − ip

xþ ip −λ

�
: ð1Þ
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The variables x and p must be understood as two canonical
conjugate classical (commuting) observables, while λ is a
control parameter. The Hamiltonian (1) displays two bands
of energy E� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p2 þ λ2

p
that are separated by a

gap except at the origin λ ¼ x ¼ p ¼ 0where they touch. It
is well known that such a degeneracy point constitutes a
source of Berry curvature, whose flux through a surface S
enclosing the origin in ðλ; x; pÞ space is a topological index
called the first Chern number C0 [30,51,52], hence the
name Berry-Chern monopole. This Chern number can be
computed for each band as

C�0 ¼ 1

2πi

Z
S
trðP�

0 dP
�
0 ∧ dP�

0 Þ; ð2Þ

where P�
0 ¼ jψ�ihψ�j is the spectral projector on the

positive and negative band, with jψ�i the two eigenstates
of H0 and dP�

0 is the one-form ∂λP�
0 dλþ ∂xP�

0 dxþ
∂pP�

0 dp. In that case the Chern numbers of the bands
are equal to C� ¼ �1. This nonzero value characterizes the
impossibility to define a smooth gauge for the eigenstates
of H0 over the parameter space. In more formal words, it is
a topological property of the Uð1Þ-fiber bundle over the
base space S2. This bundle terminology simply means that
at each point ðλ; x; pÞ of the base space, the eigenstates
jψ�i are defined up to a phase, owing to their normalization
which is preserved due to Hermiticity ofH0. Extending this
topological property to non-Hermitian Hamiltonians is
therefore not obvious, precisely because this Uð1Þ-fiber
bundle structure is, in general, lost.
To circumvent this difficulty, we interpret H0½λ; x; p� as

the symbol Hamiltonian, or semiclassical limit, of the
operator Hamiltonian [31–33],

H0½λ� ¼
�
λ â†

â −λ

�
¼ âσ− þ â†σþ þ λσz; ð3Þ

where σ� ¼ σx � iσy with σi (i ¼ x, y, z) the Pauli
matrices, and â and â† are the bosonic annihilation and
creation operators that satisfy ½â; â†� ¼ 1. Those operators
are related to the (noncommuting) position and momentum
operators that satisfy ½x̂;p̂�¼ i (ℏ ¼ 1), as â¼ðx̂þip̂Þ= ffiffiffi

2
p

,
â† ¼ ðx̂ − ip̂Þ= ffiffiffi

2
p

. Up to the rescaling λ=
ffiffiffi
2

p
→ λ, the

symbol Hamiltonian (1) is recovered by simply replacing
the operators x̂ and p̂ by their classical commuting
counterpart x and p. Note that the same model is recovered
for a Weyl fermion in a magnetic field where the magnetic
momenta in the orthogonal plane become canonical con-
jugated observables (such as x̂ and p̂), while the longi-
tudinal momentum plays the role of λ [31].
As shown in Fig. 1 (up-left), the spectrum ofH0 is made

of two branches � given by the set

E�
0;n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ðnþ 1Þ

q
n ∈ N; ð4Þ

E−1 ¼ λ: ð5Þ

The additional mode of energy E−1 ¼ λ constitutes the
spectral flow, as it transits from the negative to the positive
branch when λ varies from −∞ to þ∞. In other words, the
positive branch gains N þ ¼ 1 mode while the negative
branch gains N − ¼ −1 mode. It is a remarkable result that
those two numbers are precisely given by the Chern numbers
(2) of the symbolHamiltonian (1) asN � ¼ C�. This relation
is precisely the monopole-spectral flow correspondence.
Importantly, for that model, the spectral flow is directly
accounted for by the analytical index

indD≡ dim KerD − dim KerD† ¼ N þ ð6Þ

with D ¼ âσ− [31]. The relation between this analytical
index and the Chern index of the symbol Hamiltonian is
known as the index theorem [53,54].
Remarkably, the analytical index (6) is defined irrespec-

tive of the diagonal part ofH0 and remains also unchanged
when multiplying the off-diagonal elements D and D† by
an arbitrary complex number. Those two crucial points
allow us to deformH0 in two different non-Hermitian ways
(i.e., diagonal and nondiagonal) that leave the analytical
index invariant. We are thus led to introduce the non-
Hermitian operator Hamiltonian

H½λ� ¼
�
λeiφ zαâ†

zβâ −λeiφ

�
ð7Þ

with zα=β ∈ C and φ a phase, that has the same analytical
index as H0. All the parameters introduced in (7) break
Hermiticity, but they actually do not play the same role.
Indeed, one can reduce the analysis of this Hamiltonian to
that of the much simpler one

Hθ½λ� ¼
�

λ eiθâ†

eiθâ −λ

�
ð8Þ

through the transformation

A−1H½ ffiffiffiffiffiffiffiffiffirαrβ
p

λ�A ¼ ffiffiffiffiffiffiffiffiffi
rαrβ

p
eiφHθ½λ�; ð9Þ

where we have introduced θ≡ ðφα þ φβÞ=2 − φ, with
zα=β ¼ rα=βeiφα=β and

A ¼
 
z1=2α 0

0 z1=2β

!
: ð10Þ

Note thatHθ corresponds to the Hermitian HamiltonianH0

introduced above when θ ¼ 0. The nonunitary transforma-
tion (9) means that if jψðλÞi is an eigenstate of Hθ½λ� with
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the eigenvalue EθðλÞ, then Ajψðλ= ffiffiffiffiffiffiffiffiffirαrβ
p Þi is an eigenstate

of H½λ� with the eigenvalue ffiffiffiffiffiffiffiffiffirαrβ
p eiφEθðλ= ffiffiffiffiffiffiffiffiffirαrβ

p Þ. So, up
to a rescaling by a factor ffiffiffiffiffiffiffiffiffirαrβ

p and to a global rotation of
angle φ of the spectrum in the complex plane, the study of
H reduces to that of Hθ, whose spectrum reads (see
Supplemental Material [55])

E�
θ;n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ e2iθðnþ 1Þ

q
n ∈ N; ð11Þ

E−1 ¼ λ: ð12Þ

The asymptotic behavior E�
θ;n → �sgnðλÞ for each n and

every θ when jλj → ∞ implies that E−1 → E�
θ;n when

λ → �∞. This means that the operator Hamiltonian Hθ

(and therefore H) displays a spectral flow with respect to
the parameter λ. Examples are shown in Fig. 1 for different
values of θ, and additional spectra of H are shown in
Supplemental Material [55].
Figure 2 summarizes the role of the different parameters

that break Hermiticity in the full model. A first important
remark is that for φ ¼ 0 modulo π (and thus in particular
for Hθ), the spectral flow eigenvalue E−1 ¼ λ remains
purely real, unlike the rest of the spectrum which is in
general complex valued. We furthermore find that the
corresponding eigenmode remains localized around x ¼ 0
(see Supplemental Material [55]). Therefore, the spectral
flowmode ofH0 remains invariant under the action of all the
non-Hermitian terms introduced in (7) but the parameter φ
which rotates its energy. Interpreting the spectral flow as a
chiral mode at a smooth interface between two Chern
insulators, this result contrasts that of [1] where the interface
state’s localization length is found to be affected by the non-
Hermiticity at a sharp steplike domain wall.
If now, in addition to φ ¼ 0, we also assume θ ¼ 0, then

the full spectrum of H becomes real-valued, irrespective
of the non-Hermitian asymmetry rα=rβ ≠ 1. Real spectra
are an unusual property of non-Hermitian matrices, and
their existence in physical systems stimulated recent
works [56,57]. Here, this property is explained by the
transformation (9) that maps, in that case, H onto the
Hermitian operator H0.

Finally, Hθ displays a striking spectrum for θ ¼ π=2.
There, the spectral flow does not bridge two branches
separated by a spectral gap in energy, but relates instead
two branches separated by a range in λ where the energy of
the modes become purely imaginary and self-conjugated.
As we detail below, this case, that requires a specific
treatment, can be understood as a pseudo-Hermitian sym-
metry breaking phase.
For now, let us focus on the interpolation between the

Hermitian case θ ¼ 0 and the pseudo-Hermitian one
θ ¼ π=2. As θ increases, the real part of the spectrum of
Hθ “unfolds” around the spectral flow level E−1, while the
imaginary part grows from zero but remains finite, leaving

FIG. 2. Diagram of the different parameters that break Hermi-
ticity. The origin, where the model becomes Hermitian, is taken
as ðrα; rβ;φ; θÞ ¼ ð1; 1; 0; 0Þ. The transformation A “projects”
the non-Hermitian Hamiltonian H into Hθ. Under this trans-
formation, the model becomes Hermitian when θ ¼ 0, and
pseudo-Hermitian when θ ¼ π=2. Whenever θ ¼ π=2, there is
no line gap in the spectrum of the symbol Hamiltonian but the
operator Hamiltonian still displays a spectral flow. The spectral
flow is in general complex valued, except for φ ¼ 0 and φ ¼ π=2
where it becomes purely real or purely imaginary, respectively.

FIG. 1. Real and imaginary part of the eigenvalue spectrum E�
θ;n of Hθ as a function of λ, up to n ¼ 20, for θ ¼ 0; 5π=12, π=2. The

spectral flow (in red) is unaffected by the non-Hermitian θ deformation.
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the spectral flow intact (Fig. 1). This robustness can be
interpreted topologically from the non-Hermitian symbol
of Hθ that reads

Hθ½λ; x; p� ¼
1ffiffiffi
2

p
�

λ eiθðx − ipÞ
eiθðxþ ipÞ −λ

�
: ð13Þ

Its spectrum E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ e2iθðx2 þ p2Þ

p
preserves the

degeneracy point at λ ¼ x ¼ p ¼ 0. Owing to the lost of
Hermiticity of Hθ, one needs to find a non-Hermitian
generalization of the Chern number to capture its topo-
logical properties [1,19,29,58]. Here we propose the
quantity

C�θ ≡ 1

2πi

Z
ðλ;x;pÞ∈S2

trðP�
θ dP

�
θ ∧ dP�

θ Þ; ð14Þ

where the P�
θ ≡ jψ�ihψ̃�j are the nonorthogonal spectral

projectors of the complex energy bands �, with jψ�i and
jψ̃�i the right and left eigenstates of Hθ, respectively.
These projectors are well defined as long as the two spectral
bands E� are separated by a line in the complex plane (the
so-called line gap [12]).
We then use the invariance by homotopy of C�θ with

respect to θ to show the equality between this generalized
Chern number and the usual one defined in the Hermitian
case, i.e., C�θ ¼ C�0 , as long as the line gap is preserved
(see Supplemental Material [55]). As the spectral flow
index (6) is also invariant in the non-Hermitian regime
(see Supplemental Material [55]), this extends the monop-
ole-spectral flow correspondence to the non-Hermitian
systems given by the operator Hamiltonian Hθ and its
symbol Hθ. This correspondence finally generalizes to
the full non-Hermitian system defined by the operator
Hamiltonian H given in (7) and its symbol H, since the
transformation (9) preserves the Chern number (see
Supplemental Material [55]).
The existence of a line gap is required for the projectors

P�
θ to be well defined. One can check that such a line gap

indeed exists along the imaginary axis for Hθ (and is tilted
by and angle φ in the full problem) except for θ ¼ π=2, as
sketched in Fig. 2. In that case, the generalized Chern
number (14) is ill defined, and we thus need to come with
another strategy to capture the topology of Hπ=2.
For that purpose, let us notice thatHπ=2 (as well asHπ=2)

owns the pseudo-Hermitian symmetry σzHπ=2½λ;x;p�σz¼
H†

π=2½λ;x;p�. This symmetry implies that the eigenenergies
are either real or appear as complex conjugate pairs. When a
parameter is varied (e.g., λ here), eigenenergies can switch
from the first case to the other in what is called a sponta-
neous pseudo-Hermitian symmetry breaking [12,29,59],
as observed here. This pseudo-Hermiticity allows us to
map Hπ=2 onto a Hermitian Hamiltonian for which the

topology is well defined (see details in the Supplemental
Material [55]).
The idea behind this mapping is to notice that the iso-

energy surfaces in parameter space for θ ¼ π=2 describe
hyperboloids E2 ¼ λ2 − x2 − p2, in contrast with the usual
Hermitian case θ ¼ 0 where they describe spheres
E2 ¼ λ2 þ x2 þ p2. Actually, the pseudo-Hermitian case
also yields a sphere, but a different one, since we have
λ2 ¼ E2 þ x2 þ p2. This hint suggests that one should
change our point of view and consider our model as an
eigenvalue problem in λ in parameter space ðE; x; pÞ.
Thinking of λ as a momentum in a y direction, and of
the energy E as the quantum number associated to ∂t, such
a transformation could be formally thought as a space-time
y ↔ t change of axes.
To do so, it is convenient to first perform a unitary

transformation UHπ=2U† ¼ H̃π=2, that preserves the
pseudo-Hermiticity, which, for the Hamiltonian operator
yields

H̃π=2½λ�≡
�

λ â†

−â −λ

�
ð15Þ

with U ¼ eiðπ=4Þσz . The eigenvalue problem in E for H̃π=2 is
actually equivalent to the following eigenvalue problem in λ,�

E â†

â −E

�
jψ 0i ¼ λjψ 0i; ð16Þ

with jψ 0i ¼ −σzjψi. The equation (16) is nothing but
H0½E�jψ 0i ¼ λjψ 0i, meaning that the eigenvalue problem
in E parametrized by λ at θ ¼ π=2, is the same as the
Hermitian eigenvalue problem in λ, parametrized by E. Thus,
interchanging θ ¼ π=2 ↔ θ ¼ 0 amounts to swapping the
roles of E and λ as parameters and eigenvalues, as it actually
appears in Fig. 1 when both E and λ are real.
The realness of λ, being the eigenvalue ofH0½E� in (16), is

ensured by imposing the realness of E, since H0½E� is
Hermitian in that case. By doing so, we only keep the
eigenmodes of H̃with a real energy and dismiss those in the
spontaneously broken phase. As a consequence, the pseudo-
Hermitian symmetry broken phase appearing in the Re E
spectrum parametrized by λ, is now interpreted as a
disappearance of eigenvalue, namely, a gap in the spectrum
in λ parametrized by Re E. Since the mapping (16) is also
valid for the symbol Hamiltonian Hθ, we conclude that the
spectral flow ofHπ=2½λ� is captured by the Chern numbers of
H0½ReE; x; p� whose value is �1. Indeed, this Hamiltonian
is formally equivalent to the previously discussed symbol
Hamiltonian H0½λ; x; p� after the substitution ReE ↔ λ, for
which the Chern numbers take the values C0 ¼ �1. In other
words, the spectral flow ofHπ=2½λ� is thus determined by the
Chern numbers of the Hermitian monopole.
Summary.— This Letter provides a non-Hermitian gen-

eralization of the correspondence between a spectral flow
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of an operator and the Chern numbers of the eigenstate
bundle associated to the degeneracy point of the (local)
symbol Hamiltonian. Our analysis has direct applications in
the investigation of topological properties in various
systems such as in photonics, fluids, and plasmas where
non-Hermitian effects are abundant. Finally, the two-band
model we have considered, seen as a spin 1=2 model, can
be generalized to higher spins and nonlinear dispersion
relations in future works, as it is known that Hermitian
spectral flows appear in such models [6,31,38,49,50].

L. J. was funded by a Ph.D. grant allocation Contrat
Doctoral Spécifique Normalien.
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