
Mott Quantum Critical Points at Finite Doping

Maria Chatzieleftheriou ,1 Alexander Kowalski ,2 Maja Berović,3 Adriano Amaricci ,4 Massimo Capone ,3,4

Lorenzo De Leo,1 Giorgio Sangiovanni ,2 and Luca de’ Medici 1,*

1Laboratoire de Physique et Etude des Matériaux, UMR8213 CNRS/ESPCI/UPMC, 75005 Paris, France
2Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat,

Universität Würzburg, 97074 Würzburg, Germany
3International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
4CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche,

Via Bonomea 265, I-34136 Trieste, Italy

(Received 2 April 2022; accepted 22 December 2022; published 7 February 2023)

We demonstrate that a finite-doping quantum critical point (QCP) naturally descends from the existence
of a first-order Mott transition in the phase diagram of a strongly correlated material. In a prototypical case
of a first-order Mott transition the surface associated with the equation of state for the homogeneous system
is “folded” so that in a range of parameters stable metallic and insulating phases exist and are connected by
an unstable metallic branch. Here we show that tuning the chemical potential, the zero-temperature
equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a
first-order transition between two metals, associated with a phase separation region ending in the finite-
doping QCP. This scenario is here demonstrated solving a minimal multiorbital Hubbard model relevant
for the iron-based superconductors, but its origin—the splitting of the atomic ground state multiplet by a
small energy scale, here Hund’s coupling—is much more general. A strong analogy with cuprate
superconductors is traced.
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Mott physics, charge instabilities, and quantum critical-
ity are recurrent leitmotifs in the field of strongly correlated
materials [1]. Their connection [2,3] was explored early on
theoretically for the cuprate superconductors [4–7]. These
are indeed doped Mott insulators and host both a “strange,”
possibly quantum critical metal, and incommensurate
charge-density wave phases [8,9]. Moreover charge insta-
bilities occur in a variety of other correlated systems like,
e.g., titanates [10] and transition-metal dichalcogenides
[11]. However despite the great interest in this topic a clear
physical picture of the conditions leading to phase sepa-
ration and quantum criticality in doped Mott insulators is
still missing.
In this work we broaden the perspective and show that a

phase separation zone ending in a QCP is an intrinsic
feature connected to the Mott transition. We address this
issue within a different framework, namely, a Hund’s metal
which is realized in a doped multiorbital Hubbard model.
We can thus both build on the recent understanding of
Hund’s metals triggered by iron-based superconductors
[12–16] and attack the problem by solving a simplified
model using dynamical mean-field theory (DMFT) [17] in
a numerically exact way, ruling out any ambiguity con-
nected with the numerical solution. More specifically we
use DMFT solved by the numerical renormalization group
(NRG) at zero temperature to study a two-orbital Hubbard
model with on-site Coulomb repulsion U and Hund’s

exchange coupling J, which favors high-spin states on
every atom [16].
Our study of this simple and paradigmatic model shows

that the generic first-order character of the transition for
J ≠ 0 [18–20], which implies two stable solutions, can be
linked directly to finite-doping instabilities. We argue that
these results are general to a wide class of models where
another energy scale besides the Hubbard U is present.
The model we analyze is the degenerate two-

orbital Hubbard model in the paramagnetic phase. The
Hamiltonian reads

Ĥ ¼
X

i≠jmσ

tijd
†
imσdjmσ þU

X

im

ñim↑ñim↓

þ ðU − 2JÞ
X

im≠m0
ñim↑ñim0↓ þ ðU − 3JÞ

X

im<m0;σ

ñimσñim0σ

ð1Þ

where d†imσ creates an electron with spin σ in orbital
m ¼ 1, 2 on site i of the lattice, and ñimσ ¼ nimσ − 1=2
is a particle-hole symmetric form of the density opera-
tors nimσ ¼ d†imσdimσ. We take J=U ¼ 0.25. Our analysis
depends on the local many-body physics and not on
details of the band structure obtained by diagona-
lizing the one-body part of the Hamiltonian Ĥ0 − μN̂ ¼P

kmσðϵk − μÞd†kmσdkmσ, where μ is the chemical potential
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and N̂ ¼ P
imσ nimσ is the operator counting the total

number of particles in the system. Thus we can choose
without loss of generality a featureless band struc-
ture with semicircular density of states (DOS) DðϵÞ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðϵ=DÞ2

p
=ðπDÞ of half-bandwidth D (corresponding,

e.g., to a Bethe lattice with infinite connectivity). With this
choice the model is half-filled (i.e., the electron density
n≡P

mσhnimσi ¼ 2) for μ ¼ 0.
We start from the half-filled system. In Fig. 1 we show the

zero-temperature quasiparticle weight Z, which is a measure
of the system’s metallicity (see Supplemental Material [21])
and whose vanishing signals the Mott transition. As a
function of the interaction strength U the metallic solution
does not evolve continuously in the insulating one though,
as testified by the sharp change in the spectrum: the gap
opens abruptly beyond a threshold value labeled Uc2, while
the central peak—of which Z is the spectral weight—
disappears. Importantly, the insulating solution with Z ¼ 0
exists not only for all larger values of U but also for a range
Uc1 < U < Uc2 where the equation of state of the system is
then multivalued. The actual transition pointUc is where the
energies of the two solutions cross.
A crucial feature is that the two stable solutions are

adiabatically connected [18,41,42] through a third, unstable
metallic branch joining the stable metallic branch in Uc2 to
the stable insulating branch in Uc1. This implies that,
following by continuity the three solutions, the equation of
state is folded into a characteristic sigmoidal shape.
These features have substantial consequences for the

doped system, which corresponds to a finite chemical poten-
tial μ (our model being half-filled for μ ¼ 0). The two
solutions evolve differently with μ [3]. Indeed as shown in

Fig. 2 they turn into coexisting stable solutions with different
densities n for the same value of μ. Yet they retain their
adiabatic connection, giving rise to a sigmoidal shape for the
nðμÞ curve, which implies the existence of a zone of phase
separation. One can overall visualize [Figs. 3(a) and 3(b)] the
equation of state as a surface in three dimensions which is
folded in a zone of the U-μ plane.
On the other hand, at large doping (large μ) one can

expect that all the fingerprints of Mott physics are washed
away and a standard metal is recovered. This implies a
complete “unfolding” of the equation of state at some μ
after which the system is single valued as a function of
thermodynamic parameters (here U and μ). Since the
paramagnetic Mott insulator can only be realized at integer
filling, a possible outcome is that the threshold μ corre-
sponds to an infinitesimal doping. Our results show instead
a different scenario where the two stable solutions survive
at finite doping and they all have metallic character. As a
consequence, the equation of states unfolds at a finite
doping, leading to a finite-doping quantum critical point.
Calculated nðμÞ curves for several values of U are

reported in Fig. 2. For all values Uc1 < U < Uc2 (e.g.,
forU=D ¼ 1.45—yellow curve in the figure) the two stable
solutions existing at half-filling continue at finite μ: the
metallic solution is immediately doped while the insulating
solution remains pinned at half-filling for a finite range of
the chemical potential (corresponding to the gap of the

FIG. 1. Multiple solutions close to the Mott transition at T ¼ 0:
interaction-driven transition. Its first-order character is due to the
finite value of Hund’s coupling J and is embodied by the
sigmoidal shape of the ZðUÞ curve in the range of interaction
strengths Uc1 < U < Uc2 where two stable solutions—one
metallic at finite Z (blue) and one insulating at Z ¼ 0 (red)—
coexist, and are connected by a third unstable metallic branch
(light blue dashed line). Inset: change of spectral function
between the metallic and insulating stable solutions when passing
Uc2 ¼ 1.5D.

FIG. 2. Multiple solutions close to the Mott transition at T ¼ 0:
density-driven transition. We plot the density (measured as
doping from half-filling) vs chemical potential curves for several
values of the interaction strength U=D. The Mott insulator is
incompressible and is thus indicated by the horizontal plateau at
half-filling, while the doped solutions are metallic. The points are
calculated within NRG DMFT, the dashed lines sketch the
unstable branch connecting the two stable ones, as deduced
from calculations within exact-diagonalization(ED)-DMFT (see
Supplemental Material [21]). The adiabatic connection of the
solutions implies the crossing of the energy between the two
stable branches at some μcðUÞ in the coexistence zone, and thus a
discontinuous jump from one to the other (corresponding to a
Maxwell construction).
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Mott insulator) and eventually becomes doped too.
However, this doped Mott insulator is a different metal
from the continuation of the half-filled metal: both are
Fermi liquids (see Supplemental Material [21]) but the
former has a much smaller quasiparticle weight, and much
lower coherence temperature [43].
As we mentioned above, the two stable branches are

connected through an unstable solution which implies that
the boundaries of the two branches are two spinodal lines
where the electronic compressibility κ ¼ ð1=n2Þðdn=dμÞ
diverges. This also implies the crossing of the free energies
of the two stable solutions at some value of the chemical
potential μc in the coexistence range, which then corre-
sponds to a Maxwell construction [see Figs. 3(a) and 3(b)].
This determines the first-order nature of the density-
driven Mott transition in a range of interactions
Uc1 < U ≲ Uc2, which follows from the first-order nature

of the interaction-driven transition and the continuity of the
equation of state. The spinodal lines and the approximate
phase separation zone are reported in Fig. 4.
For U > Uc2 no metallic solution exists at half-filling

and the coexistence zone shifts to larger values of μ, and is
seen to shrink (blue curves in Fig. 2). The Maxwell
construction jump will then eventually happen at a μc
where both branches are metallic. Therefore the discon-
tinuous Mott transition evolves in a discontinuous tran-
sition between two differently doped metals. In contrast, for
these (and all larger) values of U, the actual doping-driven
Mott metal-insulator transition becomes second order.
Finally, we find that when U grows beyond a critical

value UQCP the sigmoid straightens (red curve in Fig. 2),
the unstable solution disappears and two stable branches
merge into one continuous stable solution. This allows us
to establish the existence of a quantum critical point (QCP)

FIG. 3. Folding of the equation of state. (a) Illustration of the
dependence of the quasiparticle weight Z as a surface plot, as a
function of the position in theU-μ plane. The golden line at μ ¼ 0
corresponds to the interaction-driven Mott transition at half-filling
(Fig. 1). (b) Corresponding surface plot of the density (doping
from half-filling). Curves are plotted corresponding roughly to
those of Fig. 2. The vertical light blue surface corresponds to the
Maxwell construction (and physically defines the zone of phase
separation) and illustrates the continuity, and common first-order
nature, between the interaction-driven Mott transition, the density-
driven one in the range near Uc1 and Uc2, and the transition
between two metals ending in a QCP. This whole scenario is
entailed by the folding of the equation of state surface as a
multivalued function on the U-μ plane (thin golden lines).

FIG. 4. Zero-temperature phase diagram in the interaction
strength-doping plane. The thick black line at half-filling is
the Mott insulating phase. The dashed black line signals its
coexistence with a metal at half-filling. The density-driven Mott
transition is first order for Uc1 < U ≲ Uc2, due to the first-order
nature of the interaction-driven Mott transition, and is accom-
panied by a zone of phase separation (in this zone, for any given
value of U, the stable phase of the system is a mixture of the two
homogeneous phases located at the border of the zone for the
same U, in proportions needed to obtain the system’s doping—its
frontier starts at Uc1 and terminates near, but not exactly at, Uc2,
see Supplemental Material [21]). For larger interaction strengths
the first-order transition is realized between two metals, whereas
the density-driven Mott transition becomes second order.
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at finite doping, where the two spinodals of the zero-
temperature first-order transition merge. There, dn=dμ,
thus the electronic compressibility κ, diverges. For U >
UQCP we are left with a smooth crossover. However, the μ
vs n curve retains an inflection point (black curve in Fig. 2),
hence a maximum of the compressibility which culminates
in the divergence at the QCP.
This confirms and substantiates the scenario of Refs. [44]

and [45], where in general a “moustache”-shaped zone of
phase separation, delimited by a diverging compressibility
and departing from the Mott transition point, crosses the
U-doping phase diagram of the Hund’s metals.
Itwas also shownearlier inRef. [3] that the incompressible

insulating solution emerging from a first-order Mott tran-
sition generally crosses its energy again with the coexisting
metallic solution at some finite μ, implying a first-order
density-driven Mott transition and phase separation. We
crucially modify and extend this picture here with the
continuity between the two solutions, which implies the
existence of spinodals limiting the coexistence zone and
the phase separation to a small range of U, and with the
unfolding of the continuous solution leading to a QCP.
As a matter of fact, the model we solved realizes a zero-

temperature analog of the liquid-gas transition, the role of
temperature and pressure being played here by the chemical
potential and the interaction strength.
However, this scenario holds only at finite Hund’s

coupling. At J ¼ 0 the transition becomes second order
at zero temperature everywhere, and no QCP is realized at
finite doping, similarly to the single-band case [46–50].
The key point allowing for the present scenario of phase
separation culminating in aQCP is thus the sigmoidal formof
the doping-vs-μ curve at T ¼ 0, which is ultimately caused
by the first-order character of the interaction-driven Mott
transition at half-filling. A natural question thus is,Why does
the onset of Hund’s coupling cause this transition to become
first order? How general is the mechanism?
We can get this insight through the analysis of the

present model in the slave-spin mean-field approximation
(SSMF—see Supplemental Material [21]) [51], which is
similar to DMFT, but yields simplified yet reliable physics,
and here is analytically tractable. This method describes the
system as a Fermi liquid with quasiparticle weight Z
computed from an auxiliary system of quantum spins on
a lattice, where it is proportional to the square of the x
component of their total on-site magnetization, mx. The
Mott transition maps then onto a ferromagnetic-to-
paramagnetic transition of the auxiliary system whereffiffiffiffi
Z

p
∝ mx plays the role of the order parameter.

The structure of the competing solutions can be analyzed
within a Landau theory, by coupling a fictitious external
magnetic field hext conjugated to mx. The behavior of the
numerically calculated Landau energy function (see
Supplementary Material [21]) ΓðmxÞ (Fig. 5) clearly
illustrates the first order nature of the transition.

We can calculate ΓðmxÞ analytically in the vicinity of a
Mott insulator, that is around mx ¼ 0, where ΓðmxÞ ¼
γ2m2

x þ γ4m4
x þOðm6

xÞ. In order to have the double-
minimum structure needed for a first-order transition γ4
has to be negative when γ2 goes from negative to positive
for increasingU (which then marksUc1 in our case). We do
find that γ4 < 0 for every J < U in this model, and we can
attach a physical meaning to this result.
Indeed it can be easily shown (see Supplemental

Material [21]) that γ4 has the same sign of the coeffi-
cient e4 in the perturbative expansion of the slave-spin
ground state energy E ¼ e2h̃

2 þ e4h̃
4 þOðh̃6Þ, in terms of

the field (self-consistent + external) h̃ acting on each spin.
In absence of the perturbation (h̃ ¼ 0), the slave-spin
Hamiltonian reproduces the local atomic spectrum
(Fig. 6). In the half-filled sector (in which the electrons
are N ¼ M ¼ 2, M being the number of orbitals) the states
are split by the Hund’s coupling J, while their distance
with the sectors with N ¼ 3 and N ¼ 1 is ðU þ JÞ=2. The
perturbation changes the occupation, so e4 is due to all the
processes involving four hops between neighboring sec-
tors. These processes can be connected (four consecutive
jumps starting from and ending in the ground state, but not
going through it otherwise—in Fig. 6 these are indicated
by the arrows in the order “a-b-b-a”), or disconnected
(products of lower-order processes—a round–trip on the
“a” arrows), weighted at the denominator by the energy
distance of each intermediate state from the ground state.
The connected contributions are always negative while the
others are positive at the fourth order. Now, in the present
case only the connected contributions can visit the excited

FIG. 5. Landau theory of the first-order Mott transition. Landau
energy function calculated within the slave-spin mean field
(SSMF), where the extrema indicate the stable (minima) and
unstable (maxima) equilibrium solutions for the order parameter
mx=M ¼ ffiffiffiffi

Z
p

(where M is the number of orbitals, here M ¼ 2,
and Z is the quasiparticle weight) for various values of U at half-
filling (see Fig. 1): below Uc1 (one minimum at large Z,
corresponding to a metal), in the coexistence zone Uc1 < U <
Uc2 (two minima—one of which at Z ¼ 0, corresponding to the
Mott insulator—and one maximum in between), and above Uc2
(one minimum in Z ¼ 0).
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states in the N ¼ 2 sector, at distance J in energy from the
ground state, thus involving a small denominator. Taking
into account all the possible processes they turn out to
dominate on the disconnected contributions that involve
only the larger energy difference ∼OðUÞ. This causes e4
and thus γ4 to be negative.
Hence the ultimate cause of a first-order Mott transition

is a splitting of the atomic ground-state multiplet much
smaller than the energy cost of charge excitations [52]. We
can also argue that essentially any term breaking the SU
(2M) symmetry leads to the same picture, including, e.g., a
Jahn-Teller distortion [53] or a crystal field splitting.
The scenario linking a first-order Mott transition with

phase separation and quantum criticality naturally calls for
a connection with models for the cuprates [15,54]. In that
context, phase separation appears ubiquitously in two-
dimensional strongly correlated models [4,5,7]. In particu-
lar cluster dynamical mean-field theory (CDMFT) studies
have shown an enhancement of the compressibility at finite
temperature culminating with an instability zone which
marks the entrance into the pseudogap phase [55]. This
finite-doping instability causes a first-order transition
between two metals across a frontier which can be tracked
back to the Mott transition at half-filling, in close analogy

with the present analysis. We can thus speculate that this
zone ends in a QCP at a critical value of the interaction [56]
providing us with a straightforward scenario that connects
the indubitable Mott physics with the very existence of
a QCP.
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