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A Coulomb blockadedM-Majorana island coupled to normal metal leads realizes a novel type of Kondo
effect where the effective impurity “spin” transforms under the orthogonal group SOðMÞ. The impurity
spin stems from the nonlocal topological ground state degeneracy of the island and thus the effect is known
as the topological Kondo effect. We introduce a physically motivated N-channel generalization of the
topological Kondo model. Starting from the simplest case N ¼ 2, we conjecture a stable intermediate
coupling fixed point and evaluate the resulting low-temperature impurity entropy. The impurity entropy
indicates that an emergent Fibonacci anyon can be realized in the N ¼ 2 model. We also map the case
N ¼ 2,M ¼ 4 to the conventional four-channel Kondo model and find the conductance at the intermediate
fixed point. By using the perturbative renormalization group, we also analyze the large-N limit, where the
fixed point moves to weak coupling. In the isotropic limit, we find an intermediate stable fixed point, which
is stable to “exchange” coupling anisotropies, but unstable to channel anisotropy. We evaluate the fixed
point impurity entropy and conductance to obtain experimentally observable signatures of our results.
In the large-N limit, we evaluate the full crossover function describing the temperature-dependent
conductance.
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Introduction.—Since the original Kondo model of a
magnetic impurity screened by a single orbital in a metal
[1], its multichannel generalization [2], especially in
mesoscopic devices [3,4], has proven to be a fruitful
system exemplifying exotic many-body phenomena
[5–10], such as emergent anyonic excitations [11–14], even
in the simplest two-channel Kondo (2CK) model [15,16].
The key parameters that determine the behavior of the system
are the spin of the impurity (S) and the largest possible total
spin (N=2) for N channels of conduction electrons. When
N > 2S, namely, the overscreened case [2], the low-temper-
ature fixed point is at intermediate coupling strength, with
both weak and strong coupling fixed points unstable.
Notably, in the limit of large N, the intermediate coupling
fixed point moves toward weak coupling and becomes
perturbatively accessible in 1=N expansion [2,17].
The intermediate coupling fixed point cannot generically

be described by a Fermi liquid theory. For example, in a
mesoscopic 2CK device, the conductance correction near
T ¼ 0 is proportional to T [7,9], and not to T2 expected of a
Fermi liquid [18]. Besides the conductance, the impurity
entropy also shows exotic noninteger quantum dimension,
which can be interpreted as a fractional ground state
degeneracy. As shown by Emery and Kivelson [15] (see
also Refs. [16,19,20]), an emergent Majorana will remain
of the impurity spin after the screening by conduction
electrons. The low-temperature impurity entropy is given
by ln

ffiffiffi
2

p
, where

ffiffiffi
2

p
is the quantum dimension of a single

Majorana (two uncoupled Majoranas have a ground state
degeneracy 2). For a 3CK model, the screened impurity
entropy is lnφ, where φ ¼ ð1þ ffiffiffi

5
p Þ=2 is the Golden ratio

[21,22], exhibiting the quantum dimension of a Fibonacci
anyon. The conventional multichannel Kondo (MCK)
models based on the SU(2) symmetry group (which is
natural in the case of a magnetic impurity) have been
extensively studied by using conformal field theory (CFT)
[5,23–30] and various other methods [17,31–40].
It is natural to expect that the rich physics of the

multichannel Kondo effect can be further expanded by
considering symmetry groups beyond the conventional
SU(2). Recently, Béri and Cooper [41,42] showed that a
Coulomb blockaded topological superconductor hosting
M-Majorana zero modes coupled to M normal metal leads
displays a Kondo interaction with SOðMÞ symmetry [43].
Even though this “topological Kondo” model has only one
SOðMÞ channel [46], in certain cases (such as M ¼ 3, 4) it
can be mapped to an SU(2) MCK model and therefore has
non-Fermi liquid (NFL) behavior at low temperatures. For
example, the conductance correction near T ¼ 0 is propor-
tional to T2ðM−2Þ=M and the impurity entropy generically
indicates a fractional ground state degeneracy [48]. With
the SOðMÞ symmetry group providing a relatively stable
NFL fixed point, the single-channel topological Kondo
model has attracted a wide range of detailed studies and
extensions [49–60]. However, the multichannel version of
it has not yet been studied.
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In this Letter, we generalize the topological Kondo
model to N ≥ 2 channels and propose a physical realization
for it. Already in the relatively simple N ¼ 2, M ¼ 8 case
we find a quantum dimension indicating an emergent
Fibonacci anyon, which cannot be realized for any M in
the single channel SOðMÞ model. In this simplest two-
channel generalization, we also find a mapping between
SO(4) and a conventional 4CK model, allowing us to find
the exact fractional fixed point conductance, Eq. (2). In
order to study a more general case, we then introduce large-
N perturbation theory similar to what has been done with
the SU(2) case [36,61,62]. We focus on the experimentally
relevant observables of the conductance [7,9,63] and
impurity entropy [22,64–68].
Two-channel topological Kondo model.—The two-

channel generalization of the isotropic topological
Kondo interaction Hamiltonian is

HK ¼ λ1S · J1ðx0Þ þ λ2S · J2ðx0Þ; ð1Þ
where Sðα;βÞ¼−iγαγβ=2 and Jðα;βÞi ¼−iðψ†

i;αψ i;β−ψ
†
i;βψ i;αÞ

are, respectively, the impurity and conduction electron spin
operators that satisfy the SOðMÞ algebra; the vectors S and
J are formed ofMðM − 1Þ=2 components labeled by ðα; βÞ
with α ≠ β taking values from 1 to M.
The interaction (1) arises from a tunneling HamiltonianP
i;α t

i
αγαψ

†
i;αðx0Þ þ H:c: between the normal metal leads

(fermion operators ψ i;α) and the Coulomb blockaded
Majorana island (Majorana operators γα) with tunneling
amplitudes tiα (which for simplicity we take to be real) and
can be realized in the setup depicted in Fig. 1(a). We
connect each Majorana of the island to two leads, labeled
i ¼ 1, 2, which we call “channels.” The M subchannels in
each channel (which is also the number of Majoranas) are
dubbed different “flavors,” labeled by α. In order to prevent
tunneling from mixing different channels, we have added a
charging energy Ec2 for the second channel. Thus, the i ¼ 2

“lead” should be considered as a large quantum dot with
small level spacing but significant charging energy in full
analogy with the proposal of Ref. [63], used to implement
the 2CK effect in quantum dots. In the weak-tunneling
limit, the effective exchange interaction strength is then
λi;αβ ∝ tiαtiβ=Ui, where Ui is the charging energy.
We will first focus on a two-channel SO(4) topological

Kondo model, which can be exactly mapped to a 4CK
model. The reason is that we can consider SOðM ¼ 4Þ as
two independent “spins,” i.e., SOð4Þ ∼ SUð2Þ × SUð2Þ,
which allows us to unitarily transform ψ i;α (with channel
index i ¼ 1, 2 and flavor index α ¼ 1, 2, 3, 4) to ψn;σðn ¼
1; 2; 3; 4; σ ¼ ↑;↓Þ (see Supplemental Material [69]).
Likewise, with the total charge of the Majorana island
fixed, one can form a single SU(2) spin 1=2 out of the four
Majorana operators γα. Thus, we have an overscreened
Kondo problem that makes the strong coupling fixed point
unstable [2] and we expect a stable intermediate coupling
fixed point in the isotropic case, where we take λ1 ¼ λ2
in Eq. (1).
Overscreening implies theNFLbehavior. In order to probe

the NFL nature of this low-temperature fixed point, one can
measure the fixed point conductance at T ¼ 0. Because of
the charging energy of other channels, except the channel
i ¼ 1, we define the conductance matrix [50]Gα;β in the first
channel as the charge current in (flavor) lead α as a linear
response to weak voltage Vβ → 0 applied to lead β, i.e.,
Gα;β ¼ hIαi=Vβ. We expect a nonzero fixed point conduct-
ance and the corresponding correction to conductance near
T ¼ 0will be TðM−2Þ=ðMþ2Þ based on our large-N results and
the scaling dimension of the leading irrelevant operator in the
CFT [21,24–26], see discussion below Eq. (8). For example,
when N ¼ 2 and M ¼ 4, we expect

Gα≠βðTÞ ¼
e2

4h

�
1þ cαβ

�
T
TK

�
1=3

�
: ð2Þ

The dimensionless coefficients cαβ (of order one) and the
Kondo temperatureTK are not predicted by the CFTmethod.
We used the fact that the two-channel SO(4) topological
Kondo model can be mapped to the 4CK model after fixing
the parity [69], see also Eq. (9). The nontrivial fractional
power of the temperature dependence signifies the NFL
behavior at low temperatures.
Another observable that also shows NFL behavior is

the impurity entropy at the fixed point. It is given by
Simp ¼ ln g, where g is usually interpreted as ground state
degeneracy. The N ¼ 1 topological Kondo model was
shown to have g ¼ ffiffiffiffiffi

M
p

for odd M and g ¼ ffiffiffiffiffiffiffiffiffiffi
M=2

p
for

evenM by Altland et al. [48]. Even though the one-channel
impurity entropy shows a nontrivial result, the N ¼ 2 case
is even more complex,

g ¼
( 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2

p
= cos½ πM

2ðMþ2Þ�; M is odd;

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þ 2Þ=2p
= cos½ πM

2ðMþ2Þ�; M is even:
ð3Þ

FIG. 1. (a) N ¼ 2 SO(4) topological Kondo model. The box at
the middle is the Majorana island and the wires (leads) at the left
and right hold conduction electrons. Each wire inside a channel is
connected to a Majorana zero mode (labeled by γ1;2;3;4) in the
island. (b) N-channel SOðMÞ topological Kondo model. The
number of Majorana zero modes (flavors) isM and the number of
layers (channels) is N. The charging energy Eci (Ec1 is zero and
all others are nonzero) is essential for each channel to prevent
channel mixing.

PHYSICAL REVIEW LETTERS 130, 066302 (2023)

066302-2



Again, the impurity entropy of a two-channel SO(4)
topological Kondo model from Eq. (3) is ln

ffiffiffi
3

p
, which

is the same as the impurity entropy of a 4CK model
[5,21,70] and exhibits the quantum dimension

ffiffiffi
3

p
of a Z3

parafermion [71]. Interestingly, two-channel SO(8) has
g ¼ 2þ φ, which indicates an emergent Fibonacci anyon
(similar to the 3CK effect). Both of the above two
observables at this fixed point show fractional values,
which are beyond Fermi liquid description and indicate
emergent anyonic excitations. We point out that, for a fixed
M, the impurity entropy and g are larger in the two-channel
case as compared to N ¼ 1. Indeed, g approaches mono-
tonically the degeneracy ofM free Majoranas in the large-N
limit, see Eq. (10) below.
The charging energy Ec2 is essential for the multichannel

topological Kondo model. Otherwise, when Ec2 ¼ 0, the
interaction couples only to a single effective channel with a
fermion operator ψ̃αðx0Þ ¼

P
iðtiα=j⃗tαjÞψ i;αðx0Þ and

reduces to the conventional N ¼ 1 topological Kondo
Hamiltonian; When Ec2 ≠ 0 with fine-tuned λ1 ¼ λ2, we
will have an intermediate coupling fixed point. In the case
λ1 ≠ λ2, based on our large-N calculations discussed below,
we expect that the weaker coupling renormalizes to zero
and the single-channel limit is recovered.
N ≫ 1: Layered construction.—Next, we generalize the

Hamiltonian (1) to N channels. Without exchange isotropy,
the interaction becomes

HK ¼
XN
i¼1

XM
α<β¼2

λi;αβSðα;βÞ J
ðα;βÞ
i ðx0Þ: ð4Þ

The coupling constant λi;αβ is real with symmetry λi;αβ ¼
λi;βα, which makes Eq. (4) Hermitian. A physical realiza-
tion for this N-channel model can be implemented by using
a layered structure depicted in Fig. 1(b), where each layer
with M flavors encodes a single SOðMÞ channel. Here,
channel mixing is prevented by a charging energy Eci of
each channel (except i ¼ 1) [63]. Therefore, Eci needs to be
larger than the temperature or bias voltage (however, large
Eci will decrease the bare Kondo couplings λi;αβ). When
Eci ≠ 0 with λ independent of both channel and flavor
indices, we will have an intermediate fixed point at weak
coupling,which is found to be stable in terms of anisotropyof
flavors; without fine-tuning of channel couplings, theweaker
channel couplings flow to zero, considering large N.
By using the perturbative renormalization group (RG) in

the large-N limit [17,36,61,72,73], we derive the third-
order equation for the coupling constant λi;αβ from Eq. (4),

dλi;αβ
dl

¼ ρ0ðλ2i Þαβ − ρ20λi;αβ
X
j

½ðλ2jÞαα þ ðλ2jÞββ − 2ðλj;αβÞ2�;

ð5Þ

where l ¼ lnðD0=DÞ, with DðD0Þ denoting the running
(bare) cutoff energy scale, and ρ0 is the density of states per

length. The three third-order terms in Eq. (5) correspond to
the three Feynman diagrams in Fig. 2(a). On the isotropic
line λi;αβ ¼ λ (for α ≠ β), we have

dλ
dl

¼ ðM − 2Þð1 − 2Nρ0λÞρ0λ2: ð6Þ

Thus, the stable intermediate fixed point is λ� ¼ 1=ð2Nρ0Þ
and moves to weak coupling in the large-N limit. At λ ≈ λ�,
ðdλ=dlÞ≡ βðλÞ ≈ −ðM − 2Þðλ − λ�Þ=ð2NÞ. The slope of
the beta function is β0ðλ�Þ ¼ −ðM − 2Þ=ð2NÞ which means
a large-N scaling dimension 1þ ðM − 2Þ=ð2NÞ in the
irrelevant direction. This agrees with the scaling dimension
of the leading irrelevant operator (LIO) with N channels
and M flavors ΔLIO ¼ 1þ ðM − 2Þ=ð2N þM − 2Þ obta-
ined from the CFT [21,24–26,74,75]. The fourth- and fifth-
order corrections to Eq. (6) are, respectively, of order
NM2ρ30λ

4 and N2M2ρ40λ
5 and are subleading by a factor

M=N, which makes the large-N perturbation expansion
convergent [41,61].
The solution of Eq. (6) is

λðDÞ
λ�

¼ f−1
�ðD=TKÞΔ

e2

�
; fðxÞ ¼ j1=x − 1je1=x−1; ð7Þ

where we introduced the Kondo temperature TK ¼
D0½e2fðλ0=λ�Þ�−1=Δ and Δ ¼ ðM − 2Þ=ð2NÞ. We will have
two solutions for Eq. (7) depending on whether the initial

FIG. 2. (a) The leading Feynman diagrams contributing to the
third-order RG equation [Eq. (5)] in the large-N limit. The solid
lines denote fermions and dashed lines denote Majorana oper-
ators. (b) Left: RG flow of the isotropic Kondo exchange
coupling with a stable fixed point λ� (black point). Right: the
conductance vs the temperature for two initial conditions λ0 ≶ λ�
in the large-N limit. When λ0 < λ�, the conductance ratio
GðTÞ=G� is given by the lower black line with a high-temperature
approximation 1=ln2½ðT=TKÞΔ� (red line), while at low temper-
ature GðTÞ=G� ≈ 1 − cðT=TKÞΔ (lower blue line), with
c ¼ 2=e2 ≈ 0.27. Here, G� ¼ ðe2=hÞðπ2=4N2Þ is the conduct-
ance at the fixed point λ�, see Eq. (8). When λ0 > λ�, we have
GðTÞ=G� ≈ 1þ cðT=TKÞΔ at low temperature (upper blue line),
while at high temperature G diverges as GðTÞ=G� ≈ 1=½2 −
2ðD=TKÞΔ=e� (green line) at ðT=TKÞΔ ¼ e, signifying break-
down of the weak coupling perturbation theory.
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(bare) coupling constant λ0 ¼ λðD0Þ is larger or smaller
than the fixed point coupling λ� [see Fig. 2(b)]. Since the
low-energy fixed point is at weak coupling in the large-N
limit, Eq. (7) gives the full crossover for the running
coupling λðDÞ, extending beyond the CFT prediction.
Conductance at large N.—In both N ¼ 1, SOðMÞ

topological Kondo model [41,42,49,50,52] and N ¼ 2,
SO(4) topological Kondo model [Eq. (2)], the fixed point
(T ¼ 0) conductance is given by a universal fractional
multiple of G0 ¼ e2=h. Here, we first evaluate the con-
ductance perturbatively in λ0 by using the Kubo formula
[69] and find Gαβ ¼ G0ðπλ0ρ0Þ2ð1 −MδαβÞ to lowest
order. By evaluating the next-order correction to the
conductance at finite frequency ω, we find a logarithmic
divergence ∼λ30 lnðD=D0Þ, where D ¼ maxfT;ωg. The
divergence results from renormalization of the coupling
λ, described by the RG equation (6). This indicates that for
T ≫ ω, Gα≠βðTÞ ¼ G0½πλðTÞρ0�2, plotted as a function of
temperature in Fig. 2(b). Remarkably, in the large-N limit,
λðTÞ remains small and the full crossover function (7) can
be found exactly as long as the bare coupling λ0 is small. At
low temperatures, T ≪ TK , the conductance approaches its
zero-temperature value with a power-law characteristic
of a NFL,

Gα≠βðTÞ=G0 ¼
π2

4N2

�
1þ cαβ

�
T
TK

�ðM−2Þ=2N�
; ð8Þ

where the dimensionless constant can be explicitly
obtained in the isotropic case, cαβ ¼ �δα;βc with c ¼
ð2=e2Þ ≈ 0.27, based on the crossover function (7). (The
sign � is determined by the initial condition λ0≷λ�.) The
temperature-dependent correction ∼TΔLIO−1, also obtained
from Eq. (7), matches with first-order correction from the
leading irrelevant operator, see below Eq. (6), somewhat
similar to the case of resistivity in an SU(2) MCK model
[27]. This is notably different from the single-channel
topological Kondo effect where the first-order correction
vanishes [41] and temperature correction is ∼T2ðΔLIO−1Þ.
The fixed point (T ¼ 0) conductance above (i.e., the first

term) can be verified forM ¼ 4, in which case we can map
the N-channel SO(4) topological Kondo model to 2NCK
by a unitary transformation (see Supplemental Material
[69]). From the mapping, we find the conductance of the
N-channel SO(4) model [69],

Gα≠βðM ¼ 4; T ¼ 0Þ=G0 ¼ sin2½π=ð2N þ 2Þ�; ð9Þ

which bears resemblance to the 2NCK fixed point con-
ductance [31,32]. The N ¼ 2 case gives the fixed point
conductance (first term) in Eq. (2). The N ¼ 1 result agrees
with Refs. [42,49,50], whereas the large-N limit agrees
with our previous result, Eq. (8).
Impurity entropy at large N.—The NFL nature of the

low-temperature fixed point becomes apparent in the

impurity entropy Simp ¼ ln g, where g can take a noninteger
value. As mentioned in the Introduction and displayed by
Eq. (3), the one- and two-channel topological Kondo
models generically show a noninteger g. Also, g for the
N-channel case can be calculated by using a modular S
matrix [21,30]. The modular S matrix of SOðMÞ is given in
Ref. [76] and the general information of it can also be found
in Ref. [77]. We then find Eq. (3) in the case N ¼ 2. Above
we saw that in the large-N limit the fixed point coupling
moves to weak coupling. In this case, the impurity is
weakly screened and we find in the large-N limit,

g ¼
8<
:

2ðM−1Þ=2
h
1 − ðM−2ÞðM−1ÞMπ2

192N2

i
; M is odd;

2ðM−2Þ=2
h
1 − ðM−2ÞðM−1ÞMπ2

192N2

i
; M is even:

ð10Þ

This result indeed reflects the fact that the impurity is almost
free at large N [the same conclusion can be made from the
conductance (8)]. The impurity entropy is that of M free
Majoranas (with a fixed total parity) with a correction of
order 1=N2 from the screening by the itinerant electrons. The
values in Eq. (3) are the ground state degeneracy at the fixed
point λ� without taking the large-N limit. They are smaller
than the above first term, giving the ground state degeneracy
at λ ¼ 0. This agrees with the g theorem in CFT, stating that
the ground state degeneracy becomes smaller along the RG
flow [23,27,70,78] from λ ¼ 0 to λ�.
Flavor anisotropy.—Since the NFL behavior in the

conventional single-channel topological Kondo model is
stable to flavor anisotropy [41], it is natural to expect the
same to be true for its multichannel generalization. Indeed,
by considering the physically motivated [69] flavor-aniso-
tropic coupling λαβ ¼ ½λþ ðλ0 − λÞðδ1α þ δ1βÞ� in Eq. (5),
we find two nontrivial fixed points with the majority
coupling λ ¼ 1=ð2Nρ0Þ in both, while the minority cou-
pling is either λ0 ¼ 1=ð2Nρ0Þ or λ0 ¼ 0. The first one is
isotropic and stable, while the second fixed point is
unstable, see Fig. 3(a). Thus, flavor anisotropy remains
irrelevant in the multichannel generalization of the topo-
logical Kondo model.
Channel anisotropy.—Since the NFL fixed point of the

conventional SU(2) MCK model is unstable to channel
anisotropy [2,74,79], it is crucial to investigate channel
anisotropy in the multichannel topological Kondo model.
We consider a flavor isotropic but channel anisotropic
version of Eq. (4) with λi;αβ ¼ λ1 for i ¼ 1;…; N1 and
λN1þi;αβ ¼ λ2 for i ¼ 1;…; N2. If we consider large-N1 and
large-N2 limits, we will have (j ¼ 1, 2)

dλj
dl

¼ ðM − 2Þλjρ0ðλj − 2N1λ
2
1ρ0 − 2N2λ

2
2ρ0Þ: ð11Þ

The RG flow is shown in Fig. 3(b) and has two stable
anisotropic fixed points. When λ1 ≠ λ2, the smaller cou-
pling constant flows to zero and the larger one λi flows to
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1=ð2Niρ0Þ. The isotropic fixed point λ1 ¼ λ2 ¼ 1=½2ðN1 þ
N2Þρ0� is unstable.
Conclusions.—We generalized the topological Kondo

interaction into its N ≥ 2-channel version by adding new
sets of floating leads connected to the Majorana island (see
Fig. 1). Consequently, we analyzed the two-channel case
for its impurity entropy [Eq. (3)] and conductance [Eq. (2)].
The former indicates an emergent Fibonacci anyon, beyond
the single-channel model. Another departure from the
single-channel model is the NFL correction to conductance,
which is of first order in the irrelevant operator, see below
Eq. (8). The introduced multichannel generalization allowed
us to develop a convergent large-N perturbation theory.
Under the large-N limit, we found that the multichannel
topological Kondo model has a stable fixed point at weak
coupling.ByusingperturbativeRG,wewere able to solve for
the running coupling constant, giving us the full crossover
from the free fixed point to the intermediate one, see Eq. (7)
and Fig. 2. We also considered the flavor and channel
anisotropies in the large-N limit [see Fig. 3, Supplemental
Material [69], andEq. (11)], finding that the flavor anisotropy
is irrelevant, while the channel anisotropy is relevant. Our
Letter motivates the further study into the exotic physics
found in multichannel Kondo models that are beyond
conventional, SU(2)-symmetric, spin systems.
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