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Recent experiments in moiré transition metal dichalcogenide materials have reported the observation of a
continuous bandwidth-tuned transition from a metal to a paramagnetic Mott insulator at a fixed filling of
one electron per moiré unit cell. The electrical transport measurements reveal a number of puzzling features
that are seemingly at odds with the theoretical expectations of an interaction-induced, but disorder-free,
bandwidth-tuned metal-insulator transition. In this Letter, we include the effects of long-wavelength
inhomogeneities, building on the results for a continuous metal-insulator transition at fixed filling in the
clean limit. We examine the effects of mesoscale inhomogeneities near the critical point on transport using
the framework of random resistor networks, highlighting the salient differences from a simple percolation-
based picture. We place our results in the context of recent and ongoing experiments.
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Introduction.—Electrical transport properties of metals
and insulators at low temperature are vastly different. The
finite, but small, low-temperature resistance in conven-
tional metals with weak disorder is due to elastic scattering
off impurities. On the other hand, electrical transport in
insulators with a finite charge gap is nearly frozen out.
Across a continuous metal-insulator transition (MIT), the
theoretical mechanism leading to the dramatic suppression
of the electrical conductivity is a question of fundamental
interest, made especially difficult by the complex interplay
of interaction and disorder effects. Recent experimental
advances in tunable moiré materials have led to the
demonstration of a bandwidth-tuned continuous quantum
phase transition (QPT) between a metal and an interaction-
induced Mott insulator at a fixed (commensurate) fill-
ing [1,2].
We focus here on one of these experiments [2], which

studied a continuous MIT in a transition metal dichalco-
genide (TMD) heterobilayer as a function of an external
displacement field at half filling. Approaching the tran-
sition from the insulating side, the charge gap vanishes
continuously and is not associated with long-range magnet-
ism (at least down to 5% of the Curie-Weiss scale).
Moreover, the spin susceptibility evolves smoothly across
the MIT, suggesting that the Mott insulator has an abun-
dance of low-energy spinful excitations and displays a
“Pomeranchuk” effect as a function of increasing temper-
ature. The temperature-dependent resistivity traces exhibit
beautiful scaling collapse into two sets of insulating and
metallic-like curves, with the possible exception of the
immediate vicinity of the critical point suggesting the
important role played by inhomogeneities. One possible
theory [3] that can help to explain much of this data is

associated with the transition from a Fermi-liquid metal to a
paramagnetic Mott insulator with a Fermi surface of
electrically neutral spinons [4]. Across such a QPT, the
spin susceptibility evolves smoothly as the electronic Fermi
surface morphs into the spinon Fermi surface, while the
quasiparticle residue and charge gap vanish continuously
upon approaching the critical point from either side. A
number of complementary theoretical approaches have also
been used to analyze other aspects of MIT and insulating
regimes [5–9] in this system. The role of disorder has been
analyzed starting from a different point of view across (but
not necessarily continuous and bandwidth-tuned) MITs
[10–13]; see also Refs. [14–16].
Despite the broad agreement between the experiment

and theory, there are a number of mysteries associated
with the transport measurements, especially when placed
in the context of the theory for a continuous metal to
paramagnetic Mott insulator transition. In the absence of
microscopic inhomogeneities, the theoretical expectation
for the resistivity evolution as a function of the external
tuning parameter and temperature is as shown in Figs. 1(a)
and 1(b). At asymptotically low temperatures, the resis-
tivity is accompanied by a universal “jump” of magnitude,
ρc ¼ RρQðρQ ¼ h=e2Þ, across the MIT. R here is a
universal number whose exact numerical value is deter-
mined by the strongly coupled field theory describing the
critical point [4,17,18]. Moreover, as a function of
increasing temperature, all resistance traces should cross
at a single point [17]. On the other hand, the experiments
reveal the following anomalous features: (i) The transport
data reveal no sign of a resistivity jump; instead, the low-
temperature resistance grows dramatically upon appro-
aching the putative critical point from the metallic side
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[Fig. 1(c)]. (ii) The resistivity traces exhibit multiple
crossings at different values of the tuning parameter as
a function of increasing temperatures [Fig. 1(c)]. (iii) The
normalized sheet resistance, RðTÞ=RcðTÞ, exhibits scaling
collapse into two families of mirror symmetric curves,
where RcðTÞ represents an unusual power-law resistance
at the critical point [Fig. 1(d)]. It is natural to ask if
resolving these discrepancies between theory and experi-
ment requires an entirely new starting point.
In this Letter, we will demonstrate that all of the

unexpected features associated with electrical transport
are likely tied to the effects of mesoscale inhomogeneities
near the continuous MIT. We do not describe the micro-
scopic origin of such inhomogeneities here, which likely
arise due to a variety of reasons including some combina-
tion of Coulomb impurities, twist-angle disorder, etc. In our
model, the sample consists of “puddles,” with a character-
istic mean bandwidth defined locally within each puddle
[23]. Electrical transport is then best described in terms of a
random network of such puddles. However, as we explain
below, a naive bond-percolation picture in terms of only
metallic and insulating links is insufficient to account for
the experimental phenomenology. The intrinsic correlation
effects that lead to additional temperature-dependent frac-
tions of puddles with “critical” resistance [ρc ∼Oðh=e2Þ]
lead to a modified percolative transition.
Model.—Let us first consider a simplified picture

at T ¼ 0. We consider an external parameter
gð∼Bandwidth=InteractionÞ driving the QPT across

g ¼ gc. As a result of the long-wavelength disorder, the
system is effectively described by a network of resistors
corresponding to either metallic (g > gc) or insulating
(g < gc) puddles. For a given mean value of the tuning
parameter, g0, we assume that the distribution of resistors is
given by Pσðg; g0Þ ¼ e−ðg−g0Þ2=σ2=

ffiffiffiffiffiffiffiffi
πσ2

p
, where σ represents

a characteristic disorder strength. Henceforth, g will denote
a unitless parameter (i.e., g=σ → g). At T ¼ 0, the metallic
resistors are assumed to have a small residual resistance,
ρm ≪ ρQ, due to weak elastic impurity scattering, while the
insulating resistors have infinite resistance [Fig. 1(a)]. The
system is then effectively described by bond percolation,
and the conductance of this random resistor network (RRN)
can be computed using the transfer-matrix method [19,20].
Next, we turn to the role of a finite temperature, which is

incorporated within our model via two distinct mechanisms.
For the insulating puddles, we assume that their resistance
has an activated form, ρ ¼ ρceΔg=2kBT ≳ ρQ, where Δg ¼
Δ0jg − gcjνz is the “local” gap size within the puddle, with a
characteristic energy Δ0. For our numerical computations
and comparison with experiments, we will assume that the
puddle itself is locally described by the clean theory
associated with a QPT from a metal to a paramagnetic
Mott insulator with a spinon Fermi surface; the associated
correlation length exponent, ν ∼ 0.67; and the dynamical
exponent, z ¼ 1 [4]. Additionally, as a function of increas-
ing temperature, the system will crossover into the quan-
tum-critical (QC) regime, which is controlled by the fixed
point associated with the clean theory [Fig. 2(a)]. As noted
earlier, transport in this regime is dominated by critical
resistors, ρc ¼ RρQ, and the volume fraction of puddles
with a critical resistance, fcritical, is controlled by the width
of the QC fan at a given temperature [Fig. 2(a)]. Once we
include both temperature-dependent effects, the numerical
calculations will lead to a remarkable agreement with the
experimental phenomenology.
To understand how the metallic, insulating, and critical

puddles contribute to the current-carrying paths, let us
consider two representative points, ðg0; TÞ, on a simplified
phase diagram [Fig. 2(a)]. We show a snapshot of a typical
percolating current path (green network) in Fig. 2(b) for the
point labeled ①, at low temperature and deep in the metallic
regime, which involves almost entirely metallic resistors
(blue) and practically no critical resistors (red). In this
low-temperature limit, the total fraction of resistors,
ðfcritical þ fmetalÞ ≈ fmetal ≫ pc, where pc is the percolation
threshold on the triangular lattice. We note that the (bond)
percolation threshold is defined as the fraction of connected
bonds in a network, at which an infinitely large cluster
forms and the percolation sets in [21]. Thus, deep in this
metallic regime, the critical resistors do not play any
significant role. We now turn to the point labeled ②, a
point at high temperature in the QC regime, where we
assume that ðfcritical þ fmetalÞ → pþ

c approaches the perco-
lation threshold from above. Let us first ignore thermal

FIG. 1. (a) and (b) Theoretical expectation for resistivity
evolution in the clean limit as a function of temperature (T)
and tuning parameter (g), across a bandwidth-tuned MIT at
g ¼ gc. There is a universal jump in the resistivity, ρc ¼ RρQ, at
g ¼ gc. For T > 0, the resistivity traces cross at a single point.
(c) Experimental results for the resistance as a function of out-
of-plane electric field, E. For T > 0, they exhibit multiple
crossing points [2]. (d) At the critical field E ¼ Ec, the
resistance exhibits an unusual power-law behavior (black dashed
line) R ∼ T−α with α ≈ 1.2.
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activation for the insulating links. With increasing temper-
ature, the width of the QC fan becomes larger, thereby
increasing fcritical. Thus, the current-carrying “backbone”
now inevitably contains critical resistors [Fig. 2(c)]. As
long as these critical resistors are located at singly con-
nected bonds along the backbone, it can lead to a significant
increase in the resistance by ∼OðρQÞ. If we now introduce a
thermally activated contribution to the resistance due to the
insulators, the current path will also include those insulat-
ing resistors with a small gap (light red) in the vicinity of
the critical point [Fig. 2(d)]. Clearly, as one approaches the
percolation threshold, the overall conductivity will be
determined by the nontrivial connectivity along the back-
bone, which we address next using a more quantitative
analysis.
Results.—We begin by presenting the evolution of the

resistance across the MIT, including the finite-temperature
effects (measured in units, T̃ ¼ kBT=Δ0, where Δ0 is a
fixed-gap scale deep in the insulator). We consider a semi-
infinite strip-like geometry with dimensions Lx × Ly∼
105 × 100. The results in Fig. 3 are obtained for ρc ¼
5ρQ and a constant ρm ¼ 0.01ρQ; we have obtained similar
results for a distribution of metallic resistance values
centered around a mean ρm. Importantly, the key differences
arise depending onwhether the critical resistors are included
in the computation. We note that our coarse-grained
percolation model ignores a number of microscopic

ingredients—e.g., the explicit temperature dependence of
ρm. However, as our analysis will show, even this simplified
treatment captures the essential phenomenology near the
MIT, where the dominant effect of increasing temperature is
to enter the critical regime [Fig. 2(a)] with a large OðρQÞ
resistance.
First, we consider the simplest scenario without any

critical resistors, where the temperature dependence enters
via thermal activation. In Fig. 3(a), we present the evolution
of resistance as a function of g0 at different temperatures. It
is clear that at any fixed value of g0, the resistance should
decrease as a function of increasing temperature due to
thermal activation. Importantly, in this scenario there are no
crossings, unlike the experimental data. Turning next to the
setup including critical resistors, we show results for
resistance in Figs. 3(b) and 3(c) in the absence and presence
of thermally activated insulators, respectively. The traces
corresponding to T ¼ 0 in both curves (violet), where
fcritical ¼ 0, are identical; the resistance diverges continu-
ously upon approaching the percolation threshold [21].
Within this setup, the notion of a universal resistivity jump
at the MIT even at asymptotically low temperatures is ill
defined. Notably, with increasing temperature, the resis-
tance curves exhibit multiple crossing points (black arrows)
just as the experimental results in Fig. 1(c), which is tied
crucially to the presence of the critical resistors with a
temperature-dependent fcritical [22].
To understand the origin of multiple crossings, recall that

pc is determined by the total fraction of resistors,
ðfcritical þ fmetalÞ. At T ¼ 0, fmetal is determined by the
blue region in the top panel of Fig. 3(d). At finite T,
fcritical ∼ T1=νz, the width of the QC fan associated with the
underlying clean fixed point. Thus, at finite T, pc is
determined by the total area of the blue and red regions
in the bottom panel of Fig. 3(d). As a function of increasing
temperature, as the area of the red region increases, the
position of the critical point g0 also changes. This leads to
the multiple crossing points.
Turning now to the temperature dependence of the

resistance in the scenario including the thermally activated
insulators, we show our results as a function of varying g0
in Fig. 3(e). We identify the critical point as g0;c ∼ −0.347
(red curve) based on the following two measures. First, one
can distinguish between a metallic and insulating-like
response at low temperatures depending on the sign of
dR=dT, with g0;c as an inflection point. Secondly, we can
observe scaling collapse for the curves near g0;c onto
metallic and insulating branches [inset of Fig. 3(e)] by
considering the normalized resistance, Rðg0; TÞ=RcðTÞ, as
a function of T=T0. Here, RcðTÞ is the resistance at the
critical field and kBT0 ¼ Δ0jg0 − g0;cjνz represents the
charge gap. We observe that the resistance in the nominally
metallic low-temperature regime increases and crosses
over into an insulating-like response at high temperatures,
in qualitative agreement with the experimental results

FIG. 2. (a) A simplified phase diagram for a continuous MIT
showing a metallic, (Mott) insulating, and critical regime, where
T� ∼ jg − gcjνz denotes a crossover scale with ν, z, the critical
exponents for the clean theory [4]. (b) A typical snapshot of the
percolating current path (green) consisting of metallic resistors
(blue) for a point labeled as ①, deep in the metallic regime.
(c) The percolating backbone for the point ② contains metallic
and critical resistors (red). (d) For the same point ②, introducing a
finite resistance due to the thermally activated resistors (light red)
contributes to the percolating backbone.
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[Fig. 1(d)]. This is a consequence of the inclusion of critical
resistors along the current path at high temperatures.
Remarkably, the asymptotic high-temperature power-law
behavior in this scenario is also similar to the experiments,
RcðTÞ ∼ 1=Tα, with α ≈ 1.2. It is worth noting that in the
scenario without thermal activation, as in Fig. 3(b), the
asymptotic high-temperature behavior of RcðTÞ ∼ 1=Tα0

with α0 ≈ 2.3 is markedly different [22]. Thus, the scenario
where temperature affects both the fraction of critical
resistors and activated insulating resistors appears to show
better quantitative agreement with the experiments. To
estimate the approximate disorder strength, we fit our T ¼
0 results to the experimental result at the lowest temper-
ature, leading to an estimated bound at σ ≲ 5 mV=nm [22].
Finally, let us address the behavior of transport at finite

temperature near g0;c, but on the insulating side of the
critical point. If one is not situated in the immediate vicinity
of the critical point, and over a small range of intermediate
temperatures, the resistance is well described by the usual
activated behavior. After all, this is how the charge gap is
extracted in the experiment. However, for a given realiza-
tion of disorder, our analysis has already shown that the
current path involves insulating links (with different local

gaps) that are thermally activated, as well as temperature-
dependent critical resistors. The latter effect plays an
important role in giving rise to the power-law envelope,
RcðTÞ, at higher temperatures. Therefore, it is natural to
consider the possibility of describing the full temperature
dependence of the resistance, which interpolates between
the power-law temperature dependence at g ¼ g0;c and an
activated form deep inside the insulator, using a single
function,

Rðg0; TÞ ¼ RcðTÞ exp
�
Ajg0 − g0;cjα

Tγ

�
; ð1Þ

where A is a T-independent constant and α, γ are new
exponents. The rationale for this modified form is that it
arises due to the flow of the current that averages over
insulating links with a distribution of different gap sizes at
low temperatures, and is controlled by the critical resistors
at high temperatures. We note that α and γ need not be equal
to the expectations from the clean theory, with α ¼ νz and
γ ¼ 1, respectively. In Fig. 3(f), by plotting ½Tγ lnðR=RcÞ�
as a function of jg0 − g0;cj, we demonstrate that the above
form describes the experimental data [2] as well as our

(b) (c)

(d) (e) (f)

FIG. 3. Evolution of the resistance for a model (a) without and (b),(c) with critical resistors. In scenario (b), the insulators have an
infinite resistance, while in (c), the insulators are thermally activated. At T ¼ 0 (violet), the resistance grows continuously upon
approaching the bond-percolation threshold without any notion of a jump. The resistance curves in (b) and (c) cross at multiple points
(black arrows). (d) The percolation threshold is determined by the total fraction, fcritical þ fmetal, where fcritical is determined by the
typical width of the quantum critical region. The point g ¼ gc is temperature independent, as it is defined as the critical point
associated with the clean system with a well-defined “single” crossing point. The point g ¼ g0 associated with the percolation
threshold varies as a function of temperature, which is reflected in the horizontal shift of the resistance curves at different
temperatures. (e) The calculated temperature dependence of resistance as a function of g0. The black dashed line denotes the
experimentally observed power law ð∼T−1.2Þ [2] and the critical g0;c ∼ −0.35 (red; see text). The inset shows the scaling collapse for
RðTÞ=RcðTÞ. The color bar represents a range −0.1 ≤ g0 − g0;c ≤ 0.04. (f) A scaling collapse of the experimental data [2] and
numerical RRN results (inset), as described by the modified functional form in Eq. (1). The rescaled temperature in the inset is defined
as T̃ ¼ kBT=Δ0, which lies in a range 0.1 ≤ T̃ ≤ 0.17.
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numerical results (inset) on the insulating side over an
extended range of temperatures. Remarkably, we find that
choosing γ ≈ 1.3 leads to a collapse of all the curves over a
wide range of temperature with α ≈ 0.95 for both the
experimental and numerical data.
Outlook.—Our Letter illustrates that a minimal model of

long-wavelength disorder-induced smearing of a continu-
ous bandwidth-tuned MIT at half filling can account for a
number of mysteries associated with recent transport
experiments [2]. However, a number of questions remain.
For instance, the experiments report evolution of the spin
susceptibility across the same transition and as a function of
temperature. Since the low-temperature susceptibility does
not change significantly across the transition, even within a
percolation-based picture the susceptibility for the insulat-
ing puddles should be comparable to the metallic puddles.
If this is not the case, the decreasing fraction of metallic
puddles below pc would lead to a decreasing susceptibility.
Similarly, the temperature-dependent evolution of the
susceptibility, and the associated Pomeranchuk effect,
can arise due to the combined effect of temperature
dependence from metallic/insulating puddles and the criti-
cal puddles. We leave a detailed theoretical modeling of
these observations for future Letter. Future measurements
of the local compressibility and NMR will lead to further
insights into the mesoscale inhomogeneities near the MIT.
These experiments likely also hold the key for explaining
the origin of the difference in the behavior of electrical
transport near a similar continuous MIT, but in a moiré
TMD homobilayer [1].
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Phys. Rev. Lett. 127, 096802 (2021).

[8] J. Zang, J. Wang, J. Cano, and A. J. Millis, Hartree-Fock
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