
Body Forces Drive the Apparent Line Tension of Sessile Droplets

Beng Hau Tan ,1 Hongjie An ,2,* and Claus-Dieter Ohl 3

1KB Corporation, The Plaza, 7500A Beach Road, 199591, Singapore
2Queensland Micro and Nanotechnology Centre, Griffith University,

170 Kessels Road, Nathan, Queensland 4111, Australia
3Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany

(Received 13 May 2022; accepted 5 December 2022; published 8 February 2023)

The line tension of a three-phase contact line is implicated in a wide variety of interfacial phenomena, but
there is ongoing controversy, with existing measurements spanning six orders of magnitude in both signs.
Here, we show that computationally obtained magnitudes, sign changes, and nontrivial variations of
apparent line tension can be faithfully reproduced in a parsimonious model that incorporates only liquid-
substrate interactions. Our results suggest that the origin for the remarkable variation lies in the failure of a
widely used estimation method to eliminate body forces, leading measured line tensions to behave like an
extensive quantity.
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Wetting and interfacial phenomena are characterized by
quantities emergent at the nexus of bulk phases. For
example, the surface tension is the excess free energy
per unit area of the surface at which two bulk phases meet.
Similarly, three phases meet at a line for which the excess
free energy per unit length defines the line tension [1].
A precise determination of these quantities is crucial for
the understanding and systematic control of natural and
industrial phenomena mediated by wetting effects, includ-
ing heterogeneous nucleation [2], cavity drying [3,4], or the
fabrication of functional materials [5–8].
The surface tension γ is well understood, with computa-

tional and experimental studies [9–11] on a wide variety
of phase pairs, length scales, and techniques estimating
γ ∼ 10−1 N=m. This estimate comports with the simple
dimensional estimate γ ∼ kBT=a20, assuming a length scale
of a0 ∼ 1 Å and a thermal energy kBT. Surprisingly, there is
no such consensus about the line tension τ. Decades of
experiments [12–25] and simulations [26–30] yield mea-
surements that span six orders of magnitude, 10−12 < τ <
10−6 N, in sharp contrast with the expected τ ∼ kBT=a0∼
10−11 N. Furthermore, measured τ varies nonmonoto-
nously and changes sign with changing system size and
wettability [31].
The line tension is predominantly estimated by the

contact angle measurements of liquid droplets on solid
surfaces [31,32]. Although Young’s equation, cos θ0 ¼
ðγSG − γLSÞ=γLG ¼ Δγ=γLG (S, L, and G denote the liquid,
solid, and gas phases) predicts that droplet contact angles θ
are size independent, a size dependence is ubiquitously
observed in practice. This effect is modeled by incorpo-
rating a phenomenological line tension τ into a corrected
Young equation [33,34]

cos θ ¼ cos θ0 −
τ

aγLG
; ð1Þ

where a is the footprint radius; see Fig. 1. As Young’s
equation is derivable from a force balance, τ can be
interpreted as an effective force, driving droplets to adopt
smaller or larger contact angles [12].
Whereas the τ measured by Eq. (1) was originally

envisaged to be the sought-after intrinsic line tension τi,
the contemporary view supposes that all measured τ should
instead be considered as an apparent line tension τa arising
from an inextricable combination of the intrinsic value and
other secondary effects, including the Tolman effect [35],
contact angle hysteresis from surface roughness [32], and
measurement errors [36]. It is, however, still unclear which
particular factors drive the apparent line tension. The
influential monograph of de Gennes et al. [36] argued that
large micronewton line tensions observed optically are an
artifact of experimental error. Although the idea that
measurements are affected by numerous sources of error
is uncontroversial, a collection [37] of 20 years of

FIG. 1. Schematic of a sessile droplet in axisymmetric coor-
dinates with footprint radius a, height h, contact angle θ, and
radius of curvature r on a solid substrate.
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experimental data shows that τa scales with droplet size a
over five orders of magnitude: an observation difficult to
attribute entirely to random experimental error.
In this Letter, we explore the possibility that the size

variation of apparent line tension is driven by a universal
factor present in all wetting systems. Through a minimal
model, we show that body forces alone are capable of
reproducing magnitudes and nontrivial variations in the
apparent line tension.
We begin by sketching out the derivations of both the

Young equation and the line tension relation [Eq. (1)] in a
droplet with a footprint radius a and height h; see Fig. 1.
Our calculations operate in an axisymmetric coordinate
system for which the origin O is the droplet’s centroid.
Expressed as a function of θ and the radius of curvature of
r ¼ a= sin θ, the free energy E of a sessile droplet on a
plane surface is

Eðr;θÞ¼ 2πγLGr2ð1− cosθÞþðγSG− γLSÞπr2sin2θ: ð2Þ

Young’s equation emerges from the minimization of
Eq. (2). Because r and θ are mutually dependent, deriv-
atives of E with respect to each of these variables must
consider the exact differential

dE ¼
�
∂E
∂θ

þ ∂E
∂r

dr
dθ

�
dθ ¼ 0:

The unknown dr=dθ can be obtained by exploiting
incompressibility, i.e.,

dV ¼ ∂V
∂θ

dθ þ ∂V
∂r

dr ¼ 0;

and taking partial derivatives of the volume of a spherical
cap

Vðr; θÞ ¼ πr3

3
ð2þ cos θÞð1 − cos θÞ2:

A surprisingly tedious effort (see the Supplemental
Material [38]) simplifies to Young’s equation,

ðγSG − γLSÞ þ γLG cos θ0 ¼ 0: ð3Þ

To incorporate an intrinsic line tension τi, one adds to
Eq. (2) the phenomenological term [33] ΔEτ ¼ 2πr sin θτi,
where 2πr sin θ is the perimeter of the droplet’s three-phase
line. Minimizing Eþ ΔEτ with respect to θ yields Eq. (1)
(see the Supplemental Material [38]).
The aforementioned argument omits body forces: an

assumption that clearly breaks down at some length scales.
A millimetric droplet (r ¼ 10−3 m) has gravitational po-
tential energy of ΔEgðrÞ ∼ ρgr4 ∼ 10−8 J, which is com-
parable to E ∼ 10−8 J. Evaluating ΔEg ¼

R
ρgzdV as a

volume of revolution leads to

ΔEg ¼ ρπg
Z

r

r−h
ðz − ðr − hÞÞðr2 − z2Þdz

¼ ρgπr4

12
ð3þ cos θÞð1 − cos θÞ3:

Minimizing Eþ ΔEg (with regard to θ) produces [39,40]

ðγSG − γLSÞ þ γLG cos θ −
ρgr2

6
ð1 − cos θÞ2 ¼ 0; ð4Þ

for which the root is the expected contact angle θ in a
gravitational field. Notably, Eq. (4) implies τa ∼þ10−6 N
for a millimetric droplet [Fig. S1], which is in surpri-
singly good agreement with experimental measurements
[13,22,32].
We now extend this analysis to explore a nanoscopic

analogy to the gravitational case: specifically, the widely
studied system of water on a graphenelike substrate.
Assume that the interaction between a single liquid
molecule and the adjacent surface is mediated by a uniaxial
potential ϕðz0Þ. Here, we designate the separation distance
to the adjacent substrate as z0 to make a distinction from the
z coordinate in Fig. 1. An incompressible control volume
dV of the liquid contains ρndV molecules, where the
number density ρn is a constant ρ0n ¼ 30Å−3 in bulk
liquid but adjacent to the substrate,

ρnðz0Þ ¼ ρ0n expð−ϕðz0Þ=ηkBTÞ: ð5Þ

Here, kB is the Boltzmann constant, T ¼ 300 K is the
temperature, and η is a dimensionless scaling factor for
which the utility will be explained later. Summing up the
scaled liquid-substrate interaction for all liquid molecules in
a spherical cap droplet of height h≡ rð1 − cos θÞ through an
axisymmetric volume of revolution integral yields

ΔEϕ ¼
Z

r

r−hþδ
ρnðz − rþ hÞϕðz − rþ hÞ

η
πðr2 − z2Þdz:

ð6Þ

In the continuum limit, δ should ordinarily be zero; but, in
molecular dynamics (MD) simulations, short-ranged repul-
sion produces a gap δ between the substrate and the first
liquid molecule; following Kim et al. [41], we use δ ¼ 3 Å.
Our calculations assume the potential ϕ (with dimension of
energy) between water and the substrate is governed by the
10-4 form [42]

ϕðz0Þ ¼ 4πεCOd
�
σ12CO
5z010

−
σ6CO
2z04

�
; ð7Þ

using Lennard-Jones 12-6 parameters for a system of
SPC/E water on a graphene lattice [43]. The 12-6 Lennard-
Jones interactions between individual liquid-substrate
atoms, when integrated over a planar surface, produce a
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9-3 liquid-wall potential (see Supplemental Material [38])
that would be a logical choice for ϕ. However, the minimum
of the 9-3 potential is known to be too close to the substrate.
Steele’s 10-4 potential was developed as a replacement that
avoids this issue [44,45]. The distance parameter between
carbon (C) and oxygen (O) is set as σCO ¼ 3.19 Å, and
d ¼ 38.1 nm−2 is the surface density of substrate atoms on a
graphene lattice. Finally, we use the empirical equation
[Eq. (4)] of Werder et al. [43] to establish a first-order
estimate for the relationship between the Lennard-Jones
energy parameter εCO and the Young contact angle θ0.
The potential [Eq. (7)] overestimates the true interaction

strength because its substitution in Eq. (5) implies that the
maximum density adjacent to the surface will reach an
unrealistically large maximum of about 8 g=cm3 [41]. This
value is unphysical because water will crystallize at such
high densities and, more importantly, because it is far larger
than the 2–3 g=cm3 found in MD simulations [12,41]. A
common way to ease this discrepancy [41,46,47] is to scale
the magnitude of ϕ by a system-specific dimensionless
factor η such that the density peak predicted by Eq. (5)
matches that observed computationally; for the SPC/E
water-graphene system, η ≈ 7.16 [47], which we use in
our calculations.
We implement our model numerically by (1) computing

Eq. (6) with Gauss quadrature; (2) computing partial
derivatives in r and θ via finite differences; and finally,
(3) calculating θðaÞ by solving for the roots of the ensuing
equation

γSG − γLS þ γLG cosθ−
2þ cosθ
2πr2 sinθ

d
dθ

½ΔEϕðr;θÞ� ¼ 0: ð8Þ

Details of the numerical implementation, derivations of
Eq. (8) and each contribution explored in this Letter, and
validation efforts are chronicled in the Supplemental
Material [38].
We present the predicted contact angles of water droplets

on a graphenelike substrate for which the Young angles
have been varied across 40 < θ0 < 140°; see Fig. 2. By
specifying this range of θ0, we do not mean to imply that
water adopts a wide variation of contact angle on graphene;
rather, we are mimicking the widespread practice of
modulating surface wettability in silico through εCO.
Each curve terminates when any of the droplet’s spatial
dimensions ða; hÞ fall below 0.5 nm. As seen in Fig. 2(a),
each ðθ; aÞ curve follows a similar dependence from the
large to small droplet limit; the contact angle becomes
smaller, reaches a minimum, and increases again, con-
comitant with the well-shaped spatial variation of the
potential ϕðzÞ. Although each curve observes a qualita-
tively similar variation, the position of the minimum is
offset with an increasing contact angle such that the
minimum disappears for θ0 ≳ 100°. Although a quantitative
comparison to previous MD studies is complicated by the

selection of different water-substrate models, simulation
run times, and sampling intervals in each study, we note
that the detailed contact angle variations seen in Fig. 2 are
qualitatively reproduced in both hydrophilic and hydro-
phobic systems (see Fig. 4 of [27], Fig. 3(a) of [12], and
Fig. 7 of [29]).
Unlike in experiments, MD simulations allow for line

tensions to be estimated over a continuous range of
wettabilities by tuning εCO. Parameter studies usually find
that τa < 0 for small θ0 and τa > 0 for large θ, with a sign
crossover at intermediate wettability. Combined, these
features lead to a characteristic asymmetric U-shaped curve
that is seen in a variety of substrates including atomically
flat and rigid substrates of graphene [27] and fcc geometries
[12], as well as mobile, nonatomically flat polar surfaces
[26]. To mimic computational estimates of τa from MD
simulations, we perform a linear regression of cos θ and
1=a for changing wettability θ0 as per Eq. (1), limiting the
range of droplet sizes used in the regression to the MD scale
of 2 < a < 8 nm. Our model captures the characteristic
τ ∼ 10 pN magnitude and reproduces the U-shaped τaðθÞ
curve; see Fig. 3.
Our model has so far neglected the intrinsic line tension

τi, although it is anticipated to contribute to the apparent
line tension. Widely known issues with inferring line
tension from contact angle measurements have inspired
new computational techniques of estimating τi that avoid
scale dependence. Consequently, three independent com-
putational estimates [48–50] suggest τi is in the region of
−5 pN. To understand how this scenario influences our
predictions, we incorporate τi ¼ −5 pN into our model
[Eq. (8)]. The size-angle distributions θðaÞ and inferred

(a) (b)

FIG. 2. The intermolecular liquid-substrate attraction manifests
as an apparent line tension for nanoscale droplets in the (a) θðaÞ
representation, and (b) cos θð1=aÞ representation. Solid lines
correspond to the baseline case incorporating only body forces
[Eq. (8)]. The Tolman effect for δT ¼ 0.5 nm (dashed lines) or an
intrinsic line tension τi ¼ −5 pN (dotted lines, but obscured by
the baseline case) produces only a marginal change. All curves
terminate when any spatial dimension falls below 0.5 nm.
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apparent line tensions for this case are shown in
Figs. 2 (dotted lines) and 3 (blue line), respectively;
only a numerically small change from the baseline case of
τi ¼ 0 (black dashed line) is observed.
Another widely invoked influence on the apparent line

tension is the Tolman effect: the dependence of surface
tension on the curvature of the liquid-gas interface

γLGðrÞ ¼
γLG

1þ 2δT=r
; ð9Þ

where δT is the Tolman length. Contemporary computa-
tional and experimental estimates [51–54] suggest
0.01≲ δT ≲ 0.5 Å. We modify our model [Eq. (8)] with
Eq. (9) for δT ¼ 0.5 Å, producing contact angle θðaÞ
curves in dashed lines in Fig. 2 and predicted apparent
line tension (red line) in Fig. 3. Again, the Tolman effect
has only a small influence on the model predictions, albeit
manifesting more strongly in the small droplet and hydro-
phobic limits. (Between two droplets of the same volume,
the one with a larger contact angle has a smaller r.)
Our results therefore suggest that, at the nanoscale, the

apparent line tension is predominantly driven by body
forces, with the Tolman effect and the intrinsic line tension
making only small contributions. These contributions are
small even at the nanoscale, where they ought to be at their
strongest, prompting the follow-up question:Do body forces
drive the apparent line tension across all length scales?
To answer this question, we solve for the line tension

variation τ�aðaÞ from the nanoscale to the macroscale,
incorporating in Eq. (8) only a gravitational component
and the short-ranged (∼1 nm) intermolecular component
[Eq. (6)]; see Fig. 4. Note that our calculation of τ�a differs
from that computed in Fig. 3; whereas the latter uses a
regression over a specified range of droplet sizes, our

calculation of τ�aðaÞ is pointwise, i.e., calculated from the
numerical derivative of cos θ as a function of 1=a.
We plot in Fig. 4 two characteristic curves bookending

the hydrophilic and hydrophobic limits, respectively, and
compare these curves against apparent line tension esti-
mates from both simulations ([26–30], points in green) and
experiments (AFM [12–19], red; optical interferometry
[21,25], orange; side view optical imaging [13,20,22–
24], blue). Filled points correspond to droplets on hydro-
philic surfaces, whereas hollow ones correspond to
hydrophobic surfaces. For comparison, we also plot the
behavior from the individual intermolecular and gravita-
tional components in dashed and dotted lines, respectively.
We limit our comparison to studies in which surfaces are
smooth (i.e., ignoring nanostructured surfaces), which infer
the apparent line tension only by Eq. (1), and which are free
of significant contact angle hysteresis (deferring to the
judgment of Amirfazli and Neumann in their authoritative
review [32]).
Despite including only two body force contributions

for the nanoscale and the macroscale, our model success-
fully reproduces the full, approximately six-order varia-
tion of τa central to the discrepancy between theory and
observation, as shown in Fig. 4. As discussed earlier, we
find good agreement between the model and simulations,
with the one apparent exception being a positive line
tension found for hydrophobic systems by Scocchi et al.
[29]. This discrepancy arises because their estimate of τa
omits small droplets on one side of an unexplained
contact angle saturation (Fig. 7 of Ref. [29]), creating
a V-shaped kink in the θðaÞ representation. Our model
reproduces the contact angle saturation in τa reported in
Ref. [29], as seen in the upper left corner of Fig. 2(a). In
the macroscopic regime, our model correctly captures

FIG. 3. Predicted apparent line tension τaðθÞ as a function of
wettability. The apparent line tension is calculated from a linear
regression of droplet sizes, 2 < a < 8 nm, to Eq. (1). This
procedure produces an asymmetric U-shaped curve featuring a
positive τ hydrophilic limit, negative τ in the hydrophobic limit,
and a sign crossover at intermediate θ0. Curves qualitatively
similar in both shape and magnitude (i.e., τ ∼ 10 pN) have been
reported in MD simulations of water on various substrates
[12,26,27]. The Tolman effect (δT ¼ 0.5 Å, red) and intrinsic
line tension (τi ¼ −5 pN, blue line) produce only a small change
from the baseline case (τi ¼ 0, black dashed line).

FIG. 4. Body forces explain the remarkable variation of τ�a in
experiments and simulations. Model predictions are shown for
hydrophobic (thin line, θ0 ¼ 160°) and hydrophilic (thick line,
θ0 ¼ 30°) wettabilities; only the effects of gravity and intermo-
lecular forces are included (τi ¼ 0). These predictions comparewell
against previous experiments [side view optical imaging, blue;
interferometry, orange; atomic force microscopy (AFM), red] and
simulations (MD, green). Filled points represent droplets on
hydrophilic surfaces, and hollow ones hydrophobic surfaces. The
asymptotic behaviors of the potential and gravitational components
alone are shown as dashed and dotted lines, respectively.
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ubiquitous observations of large micronewton line ten-
sions in the 10−5 to 10−4 range.
Our model underestimates the magnitude of line tension

in the microscale regime of 10−7 < a < 10−6 m, but dis-
agreement is within our expectations for two reasons. First,
experiments in the microscale regime rely on tapping mode
AFM to image droplets that, unlike the other techniques in
our dataset, is inherently invasive. Successful imaging
entails the probe exerting a finite interaction force that
slightly deforms the droplet, generating a negative but
spurious contribution to τa. To complicate matters, experi-
ments in the a ¼ 50–300 nm regime [55] corroborate
theoretical predictions [56,57] that the interfacial stiffness
of droplets increases substantially with decreasing size.
Under similar imaging conditions (set point in tapping
mode), larger droplets experience a greater relative defor-
mation, making a negative contribution to τa that lowers the
curves in Fig. 4. Observed measurements are consistent
with this argument, evidenced by the relatively good model
agreement for small (∼10 nm) AFM-imaged droplets. An
equally plausible but more straightforwardly articulated
reason for our model’s underestimate of τa in this regime is
its omission of attractive body forces at the nanometer to
micrometer range, for which the inclusion would lower the
theoretical curves in Fig. 4, and thus improve agree-
ment with the experimental data. We have not modeled
this effect because there are numerous—possibly coexist-
ing—possible long-ranged liquid-substrate interactions
at the 1 nm [58,59], 10 nm [60–62], and 100 nm ranges
[63,64].
In summary, we present a minimal model that demon-

strates how the apparent line tension is primarily driven by
body forces. Our results imply that the remarkable six-order
discrepancy between observed and theoretical accounts of
the line tension arises from the failure by measurement
techniques to eliminate body forces, leading measured line
tensions to behave like an extensive quantity (Fig. 4),
despite being defined from the outset to be an intensive one.
Recent computational estimates [49,50] that intentionally
avoid scale dependence lend support to this picture because
they yield some of the smallest known (approximately
piconewton) measurements of the line tension. We envisage
that our findings, allied with new measurement techniques
uncontaminated by extensive contributions, will pave the
way for much sought-after clarity about the line tension.
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