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The large radiative production rate for pseudoscalar mesons in the J=ψ radiative decay remains elusive.
We present the first lattice QCD calculation of partial decay width of J=ψ radiatively decaying into ηð2Þ, the
SU(2) flavor singlet pseudoscalar meson, which confirms QCD UAð1Þ anomaly enhancement to the
coupling of gluons with flavor singlet pseudoscalar mesons. The lattice simulation is carried out using
Nf ¼ 2 lattice QCD gauge configurations at the pion mass mπ ≈ 350 MeV. In particular, the distillation
method has been utilized to calculate light quark loops. The results are reported here with the mass
mηð2Þ ¼ 718ð8Þ MeV and the decay width ΓðJ=ψ → γηð2ÞÞ ¼ 0.385ð45Þ keV. By assuming the dominance

of UAð1Þ anomaly and flavor singlet-octet mixing angle θ ¼ −24.5°, the production rates for the physical η
and η0 in J=ψ radiative decay are predicted to be 1.15ð14Þ × 10−3 and 4.49ð53Þ × 10−3, respectively, which
agree well with the experimental measurement data. Our study manifests the potential of lattice QCD
studies on the light hadron production in J=ψ radiative decays.

DOI: 10.1103/PhysRevLett.130.061901

Introduction.—The production of light hadrons in the
J=ψ radiative decay is mainly through the processes
whereby J=ψ annihilates into (at least two) gluons after
emitting a photon, and the gluons in the final state are
hadronized into light hadrons. The abundance of gluons in
these processes may favor the production of glueballs, the
bound states of gluons, over the conventional light qq̄
hadrons based on the naive αs power counting. Thus, a
relatively large branching fraction of a light hadron in the
J=ψ radiative decay may indicate that it is a glueball
candidate or has a predominant glueball component.
Experimentally, pseudoscalar mesons usually have large
radiative production rates. For instance, the branching
fraction Br½J=ψ → γη0ð958Þ� is as large as 5.25ð7Þ ×
10−3 [1]. However, it is known that the η0 meson is well
established as a qq̄ meson belonging to the SU(3) flavor
nonet made up of the lightest pseudoscalar mesons.
Theoretically, the quenched lattice QCD studies [2–4]
predict that the mass of the pseudoscalar glueball is around
2.4–2.6 GeV, which is also confirmed by lattice simulations
with dynamical quarks [5–8]. These results also disfavor η0
and other pseudoscalar mesons with masses below 2 GeV
to be glueball candidates. Therefore, their large production

rates in the J=ψ radiative decay need to be understood. One
possible reason is that the QCD UAð1Þ anomaly non-
perturbatively enhances the coupling of gluons with flavor
singlet pseudoscalar mesons. One can check this through
the dimensionless effective coupling gJ=ψXγ which can be
extracted by subtracting the kinetic factor from the mea-
sured branching fraction of each process J=ψ → γX (here
X refers to a specific pseudoscalar state). It turns out that
gJ=ψXγ have similar magnitudes for different X and are close
to that of the pure gauge pseudoscalar glueball [9]. This
observation implies a possible common theoretical mecha-
nism that UAð1Þ anomaly plays a crucial role in the process
of J=ψ radiative decaying to pseudoscalars. Although the
above discussion may be a reasonable explanation, per-
forming a quantitative derivation of the pseudoscalar
production rate is highly desired to confirm this possibility.
In this Letter, we present the first lattice QCD calculation of
the partial width of the decay process J=ψ → γηð2Þ, where
ηð2Þ means the isoscalar pseudoscalar meson for Nf ¼ 2

flavors. Since the underlying gluonic dynamics of Nf ¼ 2
is very similar to that of Nf ¼ 2þ 1, the result of ηð2Þ can
be easily extended to η and η0 by considering their mixing.
Formalism.—The partial decay width of the process

J=ψ → γηð2Þ is related to the on shell form factor
MðQ2 ¼ 0Þ as

ΓðJ=ψ → γηð2ÞÞ ¼
4α

27
jq⃗γj3M2ð0Þ; ð1Þ

where the electric charge of charm quark Qc ¼ 2e=3 has
been incorporated, α ¼ 1=134 is the fine structure constant
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at the charm quark mass scale, and jq⃗γj ¼ ðm2
J=ψ −

m2
ηð2Þ Þ=ð2mJ=ψÞ is the spatial momentum of the final state

photon. The form factor MðQ2Þ is defined through the
electromagnetic multipole decomposition [10] of the tran-
sition matrix element in this process, namely,

hηð2Þðpηð2Þ Þjjμemð0ÞjJ=ψðpJ=ψ ; λÞi
¼ MðQ2ÞϵμνρσpJ=ψ ;νpηð2Þ;ρϵσðpJ=ψ ; λÞ; ð2Þ

where ϵσðpJ=ψ ; λÞ is the polarization vector of J=ψ and
jμem ¼ c̄γμc is the electromagnetic current of the charm
quark. Here we only consider the initial state radiation and
ignore photon emissions from sea quarks and the final state.
Theoretically, this matrix element can be extracted from the
following three-point function:

Γð3Þ
μi ðq⃗;t;t0Þ¼

X

y⃗

eiq⃗·y⃗hOηð2Þ ðp0!;tÞjμemðy⃗;t0ÞO†
J=ψðp⃗;0Þi ð3Þ

with q⃗ ¼ p⃗0 − p⃗, where Oηð2Þ ðp⃗; tÞ and OJ=ψðp⃗; tÞ are the
interpolating field operators for the ηð2Þ state and the J=ψ
state with spatial momentum p⃗, respectively. Therefore, the

major task is the calculation of Γð3Þ
μi ðq⃗; t; t0Þ which can be

done directly in the lattice formalism. Since the decay
process occurs in the transition from charm quarks to light
quarks which is mediated by gluons, quark annihilation
diagrams are necessarily involved in the calculation by
using the distillation method [11].
Numerical details.—We have generated gauge configu-

rations with L3
s × T ¼ 163 × 128 anisotropic lattice by

using the tadpole improved Symanzik’s gauge action
[2,4] and the tadpole improved clover fermion action for
degenerate u, d quarks [8,12]. The renormalized anisotropy
parameter and the temporal lattice spacing are deter-
mined to be ξ ¼ as=at ¼ 5.3 and a−1t ¼ 6.894ð51Þ GeV.
Therefore, the spatial lattice spacing is as ¼ 0.152ð1Þ fm
[13]. Pion mass mπ ¼ 348.5ð1.0Þ MeV is related with the
parameter of bare u, d quark mass. The valuemπLsas ≈ 3.9
warrants that the finite volume effects on this lattice setup
are not important. We use 6991 configurations to guarantee
the good signals of the correlation functions which involve
disconnected quark diagrams. For the valence charm
quark, we adopt the clover fermion action in Ref. [14]
with the charm quark mass parameter being tuned to
give ðmηc þ 3mJ=ψÞ=4 ¼ 3069 MeV. With this action,
the masses of ηc and J=ψ are derived precisely to be mηc ¼
2.9750ð3Þ GeV and mJ=ψ ¼ 3.0988ð4Þ GeV. The para-
meters of our gauge ensemble are listed in Table I. On
each gauge configuration, we generate the perambulators of
u, d quarks in the Laplacian Heaviside (LH) subspace
spanned by the N ¼ 70 eigenvectors with the lowest
eigenvalues, such that the annihilation diagrams of light
quarks can be calculated conveniently [11].
The operator set of the isoscalar ηð2Þ includes

various types of operators. The explicit form is

Oηð2Þ ¼ ði= ffiffiffi
2

p ÞðuΓuþ d̄ΓdÞ, where u and d are LH
smeared quark fields [11], and Γ refers to γ4γ5, γ4γ5γi∇i

or γ4γiBi. Here ∇ ¼ ∇⃗ − ∇⃖ with ∇⃗ð∇⃖Þ denoting the gauge
covariant derivative acting on quark fields from the right
(left) side, and Bi is the antisymmetric combination of ∇i.
The corresponding operators for a moving ηð2Þ with spatial
momentum p⃗ ¼ ð2π=LasÞn⃗ are obtained through the
Fourier transformation. Thus for each p⃗, we obtain
the optimized operator Oηð2Þ ðp⃗; tÞ which couples most to
the lowest state ηð2Þ by solving the generalized eigenvalue
problem to the correlation matrix of this operator set. In this
Letter, the momentum mode n⃗ runs from n⃗ ¼ ð0; 0; 0Þ up to
n⃗ ¼ ð1; 2; 2Þ to guarantee that the region with Q2 ∼ 0 can
be reached. Although the Fourier transformed operators
also couple to a moving meson state with different JPC

quantum numbers from 0−þ [15], it does not matter in the
present case since the lowest state for eachmomentummode
must be ηð2Þ. This is justified by the correct dispersion
relation of ηð2Þ shown in Fig. 1, where Eðp⃗Þ are the ener-
gies of the ground states contributing to the correlation

functions Γð2Þ
ηð2Þηð2Þ ðp⃗; tÞ ¼ hOηð2Þ ðp⃗; tÞO†

ηð2Þ ðp⃗; 0Þi, and the
straight line illustrates the fit using the continuum dispersion
relation E2ðp⃗Þa2t ¼ m2

ηð2Þa
2
t þ ð1=ξ2Þjp⃗j2a2s with the best-fit

parameters mηð2Þ ¼ 718ð8Þ MeV and ξ ¼ 5.336ð36Þ.
We use the continuum current form jμemðxÞ ¼ c̄ðxÞγμcðxÞ

for the electromagnetic current of charm quarks, which is
not conserved on the lattice and should be renormalized.
We adopt the strategy used in Refs. [10,16] to determine the

TABLE I. Parameters of the gauge ensemble.

L3
s × T β a−1t (GeV) ξ mπ (MeV) Ncfg

163 × 128 2.0 6.894(51) ∼5.3 348.5(1.0) 6991

FIG. 1. The dispersion relation for ηð2Þ. The data points
show the numerical results, and the band exhibits the error of
the fitting. The continuum dispersion relation E2ðp⃗Þa2t ¼
m2

ηð2Þa
2
t þ ð1=ξ2Þjp⃗j2a2s is applied, and the fitted parameters are

ξ ¼ 5.336ð36Þ and mηð2Þ ¼ 718ð8Þ MeV.

PHYSICAL REVIEW LETTERS 130, 061901 (2023)

061901-2



renormalization factor ZV. By calculating the rele-
vant electromagnetic form factors of ηc, we obtain Zt

V ¼
1.165ð3Þ for the temporal component of jμemðxÞ and
Zs
V ¼ 1.118ð4Þ for its spatial components. In this Letter,

only Zs
V is involved and is incorporated into the following

expressions implicitly.
For J=ψ in its rest frame, we use the conventional

quark bilinear operator OJ=ψ ;ið0⃗; tÞ ¼
P

z⃗ c̄ðz⃗; tÞγicðz⃗; tÞ in
the three-point function Γð3Þ

μi ðq⃗; t; t0Þ. Since charm quarks
and light quarks are contracted separately, for the kinetic
configuration where J=ψ is at rest and ηð2Þ moves with

momentum q⃗, we re-express Γð3Þ
μi ðq⃗; t; t0Þ as

Γð3Þ
μi ðq⃗; t; t0Þ ¼

1

T

XT

τ¼1

hOηð2Þ ðq⃗; tþ τÞGμiðq⃗; t0 þ τ; τÞi ð4Þ

with the block Gμiðq⃗; t0 þ τ; τÞ defined by

Gμiðq⃗; t0 þ τ; τÞ ¼
X

y⃗

eiq⃗·y⃗jμemðy⃗; t0 þ τÞO†
J=ψ ;ið0⃗; τÞ; ð5Þ

where we average over all the source time slices τ ∈ ½1; T�
to increase the statistics. The schematic quark diagram of

Γð3Þ
μi after Wick contraction is shown in Fig. 2, where the left

loop of quark lines is given by the factor Gμi in Eq. (5) and
the right part is a light quark loop from the self-contraction
of Oηð2Þ . On each configuration, the two parts are evaluated
independently. We remark that the light quark loops can be
conveniently calculated through the perambulators of u, d
quarks. In order to compute the Gμi part, which is similar to
the calculation of a two-point correlation function for J=ψ,
we use a wall source to calculate the propagator of charm
quark

P
y⃗ Scðx⃗; t; y⃗; τÞ with τ running over all the time

slices. Thus the charm quark loop in Fig. 2 can be
approximated as

X

z⃗

Tr½γμScðy⃗; t; z⃗; τÞγiγ5S†cðy⃗; t; z⃗; τÞγ5�

→
X

z⃗; z0
!
Tr½γμScðy⃗; t; z⃗; τÞγiγ5S†cðy⃗; t; z0

!
; τÞγ5�; ð6Þ

where the additional terms in the second line are not gauge
invariant and will be canceled out after averaging over
gauge configurations with enough statistics. It should be
emphasized that in the calculation of Gμi, the source
operator OJ=ψ ;iðp⃗; tÞ should have a definite momentum

projection (we use p⃗ ¼ 0 in this Letter); otherwise, one
cannot get available signals for the three-point correlation

function Γð3Þ
μi .

When t ≫ t0 and t0 ≫ 0, Γð3Þ
μi ðq⃗; t; t0Þ can be expressed as

Γð3Þ
μi ðq⃗; t; t0Þ ≈

Zηð2Þ ðq⃗ÞZ�
J=ψ

4VEηð2Þ ðp⃗ÞmJ=ψ
e
−Eηð2Þ ðp⃗Þðt−t0Þe−mJ=ψ t0

×
X

λ

hηð2Þðq⃗ÞjjμemjJ=ψð0⃗; λÞiϵ�i ð0⃗; λÞ; ð7Þ

where V is the spatial volume, Zηð2Þ ðq⃗Þ¼hΩjOηð2Þ ðq⃗Þj×
ηð2Þðq⃗Þi, and ZJ=ψϵið0⃗;λÞ¼hΩjOJ=ψ ;ið0⃗ÞjJ=ψð0⃗;λÞi. The
dependence of Zηð2Þ on q⃗ is due to the LH smeared operator
Oηð2Þ [17]. The two-point correlation functions can be
expressed as

Γð2Þ
ηð2Þηð2Þ ðq⃗; tÞ ≈

1

2Eηð2Þ ðq⃗ÞV
jZηð2Þ ðq⃗Þj2e

−Eηð2Þ ðq⃗Þt;

Γð2Þ
J=ψJ=ψ ;iiðtÞ ≈

1

2mJ=ψV
jZJ=ψ j2e−mJ=ψ t: ð8Þ

Note that Γð2Þ
ηð2Þηð2Þ ðq⃗; tÞ includes the contributions from both

connected and disconnected diagrams. We can extract the
matrix elements hηð2ÞjjμemjJ=ψi. For the kinetic configura-
tion in Eq. (4), the explicit expression of Q2 is
Q2 ¼ jq⃗j2 − ½mJ=ψ − Eηð2Þ ðq⃗Þ�2. Thus for a given q⃗ we

can extract the form factor MðQ2Þ using Eqs. (7), (8),
and (2).
We observe the dominance of J=ψ on Γð3Þ

μi ðq⃗; t; t0Þ when
t0 > 40. For each Q2, we fix t0 ¼ 40 to get MðQ2; tÞ when
t > t0. Figure 3 shows the t dependence of MðQ2; tÞ at

FIG. 2. The schematic diagram for the process J=ψ → γηð2Þ.

FIG. 3. Form factors MðQ2; tÞ versus t − t0 with t0 ¼ 40.
Different colors indicate different jn⃗j2, which lead to some
near-zero Q2. The horizontal solid lines along with dashed lines
illustrate the fitted values and errors of MðQ2Þ with constants as
fitting formulas, and the fitting ranges are shown as ranges of
these lines. The shaded bands are fitting results to the data points
by using MðQ2; tÞ ¼ MðQ2Þ þ cðQ2Þe−δEðt−t0Þ as fitting formu-
las. All the errors are obtained by jackknife resampling.
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several Q2 close to Q2 ¼ 0. It is seen that a plateau region
appears beyond t − t0 > 10 for each Q2, where MðQ2Þ is
obtained through a constant fit. The solid lines illustrate the
central values and fitting time ranges, while the dashed
lines indicate the jackknife errors. We also try to use a
function MðQ2; tÞ ¼ MðQ2Þ þ cðQ2Þe−δEðt−t0Þ to fit the
data points at smaller t − t0 (shaded bands in Fig. 3).
The exponential term is introduced to account for the
higher state contamination. The fitted MðQ2Þ in this way
are consistent with those in the constant fit but have much
larger errors. Therefore, we use the results from the
constant fit for the values of MðQ2Þ, which are listed in
Table II.
In order to predict the partial decay width for the process

J=ψ → γηð2Þ using Eq. (1), the on shell form factor
MðQ2 ¼ 0Þ is required and can be obtained by the Q2

interpolation of MðQ2Þ to Q2 ¼ 0. In practice, we perform
a polynomial interpolation MðQ2Þ ¼ Mð0Þ þ aQ2 þ bQ4.
The shaded curve in Fig. 4 exhibits that this function
describes the dependence of MðQ2Þ on Q2 very well in the
availableQ2 range and gives the interpolated valueMð0Þ ¼
0.01051ð61Þ GeV−1 (labeled as a red point in the figure).
Plugging this value into Eq. (1), the partial width and the

branching fraction of the decay process J=ψ → γηð2Þ are
predicted to be

ΓðJ=ψ → γηð2ÞÞ ¼ 0.385ð45Þ keV
BrðJ=ψ → γηð2ÞÞ ¼ 4.16ð49Þ × 10−3; ð9Þ

where the branching fraction is deduced by using the J=ψ
total width Γ ¼ 92.6ð1.7Þ keV.
Discussion.—The branching fraction of the process

J=ψ → γηð2Þ in Eq. (9) has been comparable with the
experimental result BrðJ=ψ → γη0Þ ¼ 5.25ð7Þ × 10−3 [1].
However, a more appropriate comparison can be performed
as follows. Firstly, Mð0Þ ¼ 0.01051ð61Þ GeV−1 for ηð2Þ is
close to Mð0Þ ¼ 0.0090ð16Þ GeV−1 for the pure gauge
pseudoscalar glueball [9]; therefore, it does not show a clear
Oðα2sÞ suppression expected for qq mesons. Secondly, it is
observed in experiments that pseudoscalar mesons, such as
η0, ηð1405=1475Þ, ηð1760Þ, Xð1835Þ, and ηð2225Þ, usually
have large branching fractions [1], and their effective
couplings in the J=ψ radiative decay are close to each
other in magnitude [9]. As such there may exist some
general mechanisms behind these facts, among which the
QCD UAð1Þ anomaly can be most important since it
enhances the gluon-pseudoscalar coupling nonperturba-
tively, as manifested by the anomalous axial current
relation in the chiral limit

∂μj
μ
5ðxÞ ¼

ffiffiffiffiffiffi
Nf

p g2

32π
Ga

μνðxÞG̃a;μνðxÞ≡ ffiffiffiffiffiffi
Nf

p
qðxÞ; ð10Þ

where jμ5 ¼ ð1= ffiffiffiffiffiffi
Nf

p ÞPNf

k¼1 q̄kγ5γ
μqk is the flavor singlet

axial vector current for Nf flavor quarks, and qðxÞ is the
topological charge density. In the meantime, Eq. (10) also
indicates that the anomalous gluon-pseudoscalar coupling
is proportional to

ffiffiffiffiffiffi
Nf

p
. Therefore, if Mð0Þ is domi-

nated by the anomaly, we have the approximate relation
Mð0; Nf ¼ 3Þ ¼ ffiffiffiffiffiffiffiffi

3=2
p

Mð0; Nf ¼ 2Þ and get an estimate
Mð0Þ ¼ 0.01287ð75Þ GeV−1 for the physical SU(3) case.
On the other hand, for the physical SU(3) flavor symmetry
case, the physical η and η0 are mass eigenstates and are
admixtures of the flavor singlet η1 and the flavor octet η8,
namely

jηi ¼ cos θjη8i − sin θjη1i;
jη0i ¼ sin θjη8i þ cos θjη1i; ð11Þ

TABLE II. The values for Eηð2Þ ðp⃗Þ, Q2, andMðQ2Þ at different momentum mode n⃗. All the values are converted into the physical unit
using a−1t ≈ 6.894 GeV.

n⃗ðp⃗Þ (0, 0, 1) (0, 1, 1) (1, 1, 1) (0, 0, 2) (0, 1, 2) (1, 1, 2) (0, 2, 2) (1, 2, 2)

Eηð2Þ ðp⃗Þ (GeV) 0.8801(87) 1.0167(61) 1.139(11) 1.228(14) 1.3434(80) 1.4324(83) 1.610(19) 1.683(19)

Q2 (GeV2) −4.668ð39Þ −3.819ð25Þ −3.062ð42Þ −2.460ð52Þ −1.782ð28Þ −1.216ð28Þ −0.132ð56Þ 0.340(54)
MðQ2Þ (GeV−1) 0.0490(57) 0.0291(20) 0.0222(15) 0.0187(19) 0.0161(10) 0.01301(66) 0.0123(13) 0.00973(90)

FIG. 4. From factor MðQ2Þ with respect to Q2 in the physical
unit. Data points indicate the numerical results. The bars present
error values that are derived through jackknife resampling. The
shaded curve illustrates the interpolation using the polynomial
MðQ2Þ ¼ Mð0Þ þ aQ2 þ bQ4. The red circle with error bar
exhibits the fitted form factor Mð0Þ ¼ 0.01051ð61Þ GeV−1.
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where θ is the mixing angle. Considering the mixing
effects and using the physical mη ¼ 548 MeV and
mη0 ¼ 958 MeV, we can predict the branching fraction
of J=ψ → γη0 as

BrðJ=ψ → γηÞ ¼ 1.15ð14Þ × 10−3

BrðJ=ψ → γη0Þ ¼ 4.49ð53Þ × 10−3 ð12Þ

for θlin ¼ −24.5° from the linear Gell-Mann-Okubo
(GMO) mass relation [1], and

BrðJ=ψ → γηÞ ¼ 0.256ð30Þ × 10−3

BrðJ=ψ → γη0Þ ¼ 5.21ð62Þ × 10−3 ð13Þ

for θquad ¼ −11.3° from the mass squared GMO relation
[1]. Obviously, the production rate of η is very sensitive to
θ. With the consideration of the experimental branching
fraction BrðJ=ψ → γηÞ ¼ 1.11ð3Þ × 10−3, the result from
θquad is too small, while from θlin it almost reproduces the
experimental value within the error. This indicates that it is
more proper to use θlin here. We notice a recent sophis-
ticated lattice study on η, and η0 [18] has calculated the
matrix elements aηðη0Þ of the topological charge density
qðxÞ between the vacuum and the ηðη0Þ state, from which
the mixing angle in the gluonic sector is derived to be θg ¼
− arctanðaη=aη0 Þ ≈ −24ð4Þ° at the energy scale μ ¼ 2 GeV.
If the UAð1Þ anomaly dominates the decay process
J=ψ → γηðη0Þ, one should use θg to derive the branching
fractions of η and η0 from our result, which should be close
to the values in Eq. (12) and agree well with experimental
results. This manifests that the UAð1Þ anomaly plays a
crucial role in the J=ψ radiative decay. The importance of
the UAð1Þ anomaly was also observed in the lattice study of
the Ds → η0 semileptonic decay [19] where the contribu-
tion of disconnected quark diagrams is comparable to that
of connected diagrams.
Summary.—We have performed the first lattice study on

the process of J=ψ radiatively decaying to the isoscalar
pseudoscalar ηð2Þ onNf ¼ 2 lattice QCD atmπ ≈ 350 MeV.
The involved light quark annihilation diagram is calculated
by the distillationmethod.With a very large gauge ensemble
consisting of about 7000 configurations, we obtain good
signals for the desired three-point correlation functions with
the insertion of the electromagnetic current. mηð2Þ ¼
717.7ð8.3ÞMeV is measured by fitting the dispersion
relation of ηð2Þ on this lattice. Through the extracted form
factor Mð0Þ¼0.01051ð61ÞGeV−1, the partial decay width
ΓðJ=ψ → γηð2ÞÞ and the corresponding branching fraction
are predicted to be 0.385(45) keV and 4.16ð49Þ × 10−3,
respectively. By assuming that the UAð1Þ anomaly is a
dominance of the decay and considering the η0 − η mixing,
our result provides the theoretical predictions for the
production rate of the physical η and η0 mesons in the
J=ψ radiative decay, which are in good agreement with

the experimental values when the mixing angle is fixed at
θlin ¼ −24.5°. In the present stage, we have only one lattice
spacing; the uncontrolled systematic uncertainties, such as
the SU(2) approximation, the chiral extrapolation, and the
continuum limit, should be tackled in the future. Our result
indicates the promising potential for lattice QCD to inves-
tigate light hadron productions in the J=ψ radiative decay.
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