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We propose a holographic duality for a four dimensional Wess-Zumino-Witten model with target
manifold SO(8), coupled to scalar-flat Kähler gravity on an asymptotically flat, four dimensional
background known as the Burns metric. The holographic dual is a two dimensional chiral algebra built
out of gauged β-γ systems with SO(8) flavor. We test the duality by matching two-point correlators of soft
gluon currents with two-point gluon amplitudes, and their leading operator product expansion coefficients
with collinear limits of three-point gluon amplitudes.
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Introduction.—Holography on asymptotically flat space-
times has been a long-standing open problem, with existing
gauge-gravity dualities relating matrix quantum mechanics
to flat space string andM theory (e.g., [1–5]). In this Letter,
we describe a new kind of holographic duality wherein the
bulk is a four-dimensional asymptotically flat, self-dual
spacetime. The duality relates certain models of self-dual
gauge and gravitational theories in the bulk to a two-
dimensional chiral algebra living on a Riemann sphere.
This example arises from a generalization of twisted

holography [6,7], whereby the B-model topological
string [8] on a “backreacted,” i.e., complex structure-
deformed geometry is dual to a B-brane world-volume
theory. The latter is typically a chiral algebra, supported on
a complex submanifold of the undeformed flat space
geometry. In these twisted examples, open-closed duality
has recently been formalized mathematically as Koszul
duality [7,11,12], which permits efficient bulk computa-
tions that match the boundary chiral algebra operator
product expansions (OPEs).
The present example is rooted in recent developments

connecting the celestial holography program to twisted
holography and twistor theory [13,14]. In flat space, it was
observed that the physics of soft gluons and gravitons is
governed by certain 2D chiral algebras [15–17]. These
chiral algebras often fail to be associative when one

incorporates quantum effects [18] or higher derivative
couplings [19]. If, however, the 4D theory can be uplifted
to a local holomorphic theory on twistor space [20],
an associative chiral algebra, including quantum effects
corresponding to higher-loop collinear singularities, is
guaranteed. The G ¼ SOð8Þ 4D Wess-Zumino-Witten
(WZW4) theory is one of these distinguished theories that
can therefore serve as a simple toy model, and its quantum
consistency when coupled to the gravitational sector is
guaranteed by a Green-Schwarz anomaly cancellation
mechanism in the type I topological string [21] on twistor
space.
The resulting twisted open-closed string theory is our

undeformed bulk theory, and we systematically incorporate
backreaction, per the standard holographic setup, by
wrapping N D1-branes on the zero section of the twistor
fibration ≃CP1, the Riemann sphere. This deforms the
spacetime geometry from flat space to the asymptotically
flat Burns space [22]. The D1-branes, as usual, support the
dual, boundary chiral algebra. The usual identification of
the twistorCP1 with the celestial sphere at null infinity then
makes this a concrete, top-down toy model of celestial
holography as envisioned by, e.g., [23,24] and references
therein. We will elaborate on the string theory uplift of
this example, and present additional details and checks
of our proposed duality, in a forthcoming companion
paper [25].
In the remainder of this Letter we introduce our bulk

gaugeþ gravitational theory and the dual chiral algebra,
describe the holographic dictionary between bulk states and
chiral algebra operators, and provide explicit checks of the
duality in 2- and 3-point computations. Supplemental
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Material [26] contains computational details of chiral
algebra OPEs and sample computations of bulk 2- and
3-gluon amplitudes to leading nontrivial order.
Bulk theory.—Our bulk spacetime is self-dual (i.e., it has

a self-dual Weyl tensor), so it is most conveniently
formulated in Euclidean signature. Let xμ ∈ R4 and intro-
duce double-null coordinates on R4 [27]

xα _α ≔
1ffiffiffi
2

p
�

x0 þ ix3 x2 þ ix1

−x2 þ ix1 x0 − ix3

�
; ð1Þ

where α ¼ 1, 2, _α ¼ _1; _2 are Weyl spinor indices. In terms
of these, we can set up complex coordinates on R4 ≃ C2,

u _α ≔ x1_α; û _α ≔ x2_α ¼ ð−u_2; u_1Þ: ð2Þ

Also let kuk2 ≔ ju_1j2 þ ju_2j2 ¼ 1
2
δμνxμxν, and denote by

∂ ¼ du _α
∂=∂u _α, ∂̄ ¼ dû _α

∂=∂û _α the holomorphic and anti-
holomorphic exterior derivatives on C2.
We equip C2 − f0g with the Riemannian metric

ds2 ¼ kduk2 þ ju_1du_2 − u_2du_1j2
kuk4 : ð3Þ

This is a self-dual metric known as the Burns
metric [22,28,29]. It is asymptotically flat, in the sense
that gμν ¼ δμν þOðkuk−2Þ at large kuk [30]. It has zero
scalar curvature but is not Ricci flat. Moreover, it is Kähler
with Kähler potential

K ¼ kuk2 þ log kuk2: ð4Þ

Let C̃2 ¼ fðu _α; ½ζ _α�Þ ∈ C2 × CP1ju_1ζ _2 ¼ u_2ζ _1g denote the
blowup of C2 at the origin. Away from u _α ¼ 0, it is
diffeomorphic to C2 − f0g, whereas the origin u _α ¼ 0 is
replaced by a copy of CP1 called the exceptional divisor.
The metric (3) extends smoothly to C̃2 [31].
We will refer to C̃2 equipped with the Burns metric as

Burns space. In the past, it has featured in the spacetime
foam models of [32], being conformally diffeomorphic to
(an affine patch of) CP2 equipped with its Fubini-Study
metric via the inversion map u _α ↦ u _α=kuk2. It has also
been conjectured to result from the backreaction of
D1-branes in topological string theory on twistor space [33],
a fact that we will prove in the companion paper [34].
The field theory we study on Burns space is the WZW4

model [20,35–37] for SO(8). This is a σ model governing
maps gðu; ûÞ from Burns space to the group manifold
of SO(8), with action

N
8π2

Z
C̃2

∂∂̄K ∧ trðg−1∂g ∧ g−1∂̄gÞ

−
N

24π2

Z
C̃2×½0;1�

∂∂̄K ∧ trðg̃−1dg̃Þ3 ð5Þ

whereN > 0 is a 4D analog of the Kac-Moody level, g̃ is an
extension of g to C̃2 × ½0; 1� satisfying the boundary
conditions g̃jC̃2×f0g ¼ 1, g̃jC̃2×f1g ¼ g, and dg̃ represents

its exterior derivative on C̃2 × ½0; 1�. The first term in this
action is the standard kinetic term for a σ model, and the
second is a 5D Wess-Zumino term.
The Wess-Zumino term is independent of the 5D

extension of g iff ðiN=2πÞ∂∂̄K ∈ H2ðC̃2;ZÞ [37]. In
particular, integrating it over the exceptional divisor of
C̃2 yields

Z
CP1

iN
2π

∂∂̄K ¼ N: ð6Þ

So, we demand the quantization condition N ∈ Zþ [38]. In
this case, WZW4 provides a gauge-fixed formulation of
self-dual Yang-Mills [27,39] at tree level. This match with
gauge theory does not persist at loop level; instead the
model is conjecturally related to 4D N ¼ 2 heterotic
strings [40].
We couple this model to a gravitational field ρ describing

Kähler metrics with Kähler potential K þ ρ that classically
obey R ¼ 0 [20]. Such scalar-flat Kähler metrics are
automatically self-dual [41,42]. They can have a non-
vanishing Ricci tensor, so are a priori unrelated to
Einstein gravity. Nevertheless, the coupled system admits
an anomaly free uplift to the type I openþ closed topo-
logical B model on twistor space [20,43,44], to which one
can apply twisted holography [6,7]. We refer to our
gravitational theory as scalar-flat Kähler gravity.
Our main proposal is a holographic duality matching the

collinear singularities in scattering amplitudes of WZW4 þ
scalar-flat Kähler gravity on Burns space with OPE
coefficients of the large N limit of a family of 2D chiral
algebras (with defects). In this Letter, we present explicit
checks of the duality in the planar limit for open string
operators in the chiral algebra, which correspond to tree-
level Yang-Mills collinear singularities; additional planar
computations matching the gravitational degrees of free-
dom will appear in [25].
Compared to previous tree and 1-loop results in celestial

holography, our proposal describes the dual chiral algebra
nonperturbatively in the bulk coupling 1=

ffiffiffiffi
N

p
. We con-

jecture that this strong form of the duality, analogous to the
strong form of the AdS=CFT correspondence, holds.
Moreover, WZW4 is a nonrenormalizable quantum field
theory, placed on a curved manifold, but our duality gives
an exact (conjectural) description of collinear limits in this
theory at finite coupling. This should be compared to
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known nonperturbative results about nonrenormalizable 2D
integrable theories [45].
The holographic dual.—The dual theory is a 2D chiral

algebra living on CP1. It is given by the BRST reduction of
a collection of symplectic bosons by the gauge group
SpðNÞ (with the conventions that the fundamental repre-
sentation of SpðNÞ is the symplectic vector space of
dimension 2N). Additionally, it has matter content con-
sisting of spin 1

2
fields valued in symplectic representations

of SpðNÞ × SOð8Þ, where SO(8) is a flavor symmetry.
There are two kinds of fields (arising from 1-5 and 1-1

strings [46], respectively):

I ¼ Iim ∈ C8 ⊗ C2N; ð7Þ

X ¼ X _αmn ∈ C2 ⊗ ⋀2
trace
free
C2N: ð8Þ

Here, m is an index in C2N , i in the fundamental of SO(8),
and _α in the fundamental of SU(2), which acts by
isometries of Burns space. The tensor X is trace-free:
X _αmnω

mn ¼ 0, with ωmn the symplectic form on SpðNÞ.
The OPEs are

Iimðz1ÞIjnðz2Þ ∼
δijωmn

z12
; ð9Þ

X _αmnðz1ÞX _βrsðz2Þ ∼
ϵ _α _β

z12

�
ωm½rjωnjs� −

ωmnωrs

2N

�
; ð10Þ

where zij ≡ zi − zj, ϵ _α _β is the two-dimensional Levi-Civita
symbol, and ωmn is the inverse of ωmn. To this algebra, we
adjoin b, c ghosts living in the adjoint of SpðNÞ, with the
usual BRSToperator. The BRST cohomology in the largeN
limit is our conjecture for the holographic dual chiral algebra.
These fields can be written down for any SOðkÞ flavor

symmetry group. Only when k ¼ 8 does the BRSToperator
square to zero. This is the conformal field theory (CFT)
counterpart of the fact [20,21] that the type I topological

string is anomaly free only for SO(8). It is worth remarking
that this algebra is the chiral algebra associated by the
construction of [47] to a well-known family of 4D N ¼ 2
superconformal field theorie, with SO(8) flavor symmetry,
SpðNÞ gauge symmetry and matter as above. For N ¼ 1,
this is SU(2) gauge theory with Nf ¼ 4, as studied by
Seiberg and Witten [48].
At large N, the BRST cohomology can be readily

computed using the method explained in [6], based on
classic results of homological algebra (this computation is
done in detail in [49]). To write down the operators, we use
ωmn to raise an index so that Xn

_1m
, Xn

_2m
are 2N × 2N

matrices. By raising and lowering SpðNÞ indices we can
treat Iim as being a collection of eight vectors or covectors.
To describe the open string operators, let us introduce an

SU(2) doublet λ̃ _α. A basis for open string operators are the
coefficients of λ̃l_1λ̃

l
_2
in the generating function

Jij½λ̃�ðzÞ ¼ Ii exp½ð2NÞ−1=2ϵ _α _βλ̃ _αX _β�Ij

¼
X∞
k;l¼0

1

k!l!
λ̃k_1λ̃

l
_2
Jij½k; l�ðzÞ: ð11Þ

This is in the adjoint of SO(8), so we will freely replace
composite indices like ij with adjoint indices a; b; c;… in
what follows. Similarly, the terms with kþ l ¼ n are in the
spin n=2 representation of SU(2).
There are also two towers of closed-string states, which

will not play an important role in this Letter:

E½λ̃�ðzÞ ¼ Trfexp½ð2NÞ−1=2ϵ _α _βλ̃ _αX _β�g;
F½λ̃�ðzÞ ¼ Trfϵ _α _βX _α∂X _β exp½ð2NÞ−1=2ϵ_γ _δλ̃_γX _δ�g þ � � � ;

where the ellipses in F½λ̃� indicate terms involving ghosts.
In the planar limit the OPEs can be computed by

elementary Wick contractions:

Ja½λ̃1�ðz1ÞJb½λ̃2�ðz2Þ ∼
fcab
z12

Jc½λ̃1 þ λ̃2�ðz2Þ −
½12�fcab
z212

Z
1

0

dω1

Z
1

0

dω2Jc½ω1λ̃1 þ ω2λ̃2�ðz2Þ þ � � � − 2N
X∞
n¼0

ð−½12�Þn
n!n!

κab1

znþ2
12

;

ð12Þ

where κab ¼ δilδjk − δikδjl in terms of composite indices
a ¼ ij, b ¼ kl, and we used the standard conventions
½1 2� ¼ ϵ _α _βλ̃1_βλ̃2_α and ϵ_γ _αϵ_γ _β ¼ δ _α_β for Weyl spinor con-

tractions. The ellipsis denotes terms involving three or
more contractions, whereas the contribution of the identity
arises from maximal contractions. The negative level of
−2N indicates that our celestial holographic dual is
nonunitary. Some minor subtleties of this computation
are also discussed in Supplemental Material [26].

We will relate OPEs of this chiral CFT to amplitudes on
Burns space. The isometry group of Burns space is U(2).
Its complexification GLð2;CÞ is a symmetry of the
analytically continued scattering amplitudes. This is in
addition to the SOð8Þ symmetry. As written, however, the
CFT has an SLð2;CÞ × SLð2;CÞ × SOð8Þ symmetry,
where one SLð2;CÞ is a flavor symmetry rotating the
dotted index on X _α and the other is 2D conformal
symmetry.
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The more precise statement of our dictionary involves a
CFT with defects at 0 and ∞, which break the SLð2;CÞ
conformal symmetry to C×. The defects are modules
generated by vacuum vectors jv0i and jv∞i annihilated
by certain modes of Ja½k; l�:I

dz znJa½k; l�jv0i ¼ 0 for n ≥ kþ lþ 1;I
dz znJa½k; l�jv∞i ¼ 0 for n ≤ −1: ð13Þ

Wewill expand on the geometric and stringy origin of these
defects in the companion paper [25]. They have also been
studied from the perspective of half-BPS surface defects in
4D N ¼ 2 theories in [50,51].
The holographic dictionary.—To study gluon perturba-

tion theory, we parametrize the WZW4 field as g ¼ eϕ,
where ϕ is an adjoint valued scalar field. As its extension,
we take g̃ ¼ etϕ for t ∈ ½0; 1�. The action (5) then expands
to

Z
C̃2

N∂∂̄K
8π2

∧ tr

�
∂ϕ ∧ ∂̄ϕ −

1

3
ϕ½∂ϕ; ∂̄ϕ� þOðϕ4Þ

�
: ð14Þ

The linearized field equation of ϕ obtained from this action
is simply the Laplace equation on Burns space,

�
ϵ _α _β þ u _αû _β

kuk4
�

∂
2ϕ

∂u _α
∂û _β

¼ 0: ð15Þ

As in flat space, we find a family of analytic solutions of
(15) labeled by a complex null momentum pα _α ¼ λαλ̃ _α,
where λ̃ _α ∈ C2 whereas λα ¼ ðz−1; 1Þ for some z ∈ C×:

ϕaðz; λ̃Þ ¼
Taeip·x=2

z

�
cos

ψp · x
2

þ i
ψ
sin

ψp · x
2

�
ð16Þ

(suppressing xα _α dependence on the left). In this expres-
sion, Ta is a generator of the gauge algebra soð8Þ and

p · x ¼ ½uλ̃�
z

þ ½û λ̃�; ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½uλ̃�½û λ̃�

zkuk2ðp · xÞ2

s
: ð17Þ

Here, ½uλ̃� ¼ u _αλ̃ _α and ½û λ̃� ¼ û _αλ̃ _α are spinor contractions.
The state (16) extends to the blowup C̃2. It also admits a
very useful “large kuk” series expansion

Ta

z

X∞
j¼0

�
−
1

z
½uλ̃�½û λ̃�
kuk2

�
j
1F1ðjþ 1; 2jþ 1jip · xÞ

ð2jÞ! : ð18Þ

Its leading term is the flat space momentum eigenstate eip·x,
up to the important normalization factor of 1=z.

We can also Taylor expand this state in λ̃ _α to write

ϕaðz; λ̃Þ ¼
X∞
k;l¼0

1

k!l!
λ̃k_1λ̃

l
_2
ϕa½k; l�ðzÞ: ð19Þ

We will refer to ϕa½k; l�ðzÞ as soft modes, as they are
analogous to the coefficients in the flat space soft expansion
of eip·x. We propose the holographic dictionary

ϕa½k; l�ðzÞ ↔ Ja½k; l�ðzÞ; ð20Þ

ϕaðz; λ̃Þ ↔ Ja½λ̃�ðzÞ: ð21Þ

In the presence of the defects, correlators of such dual
operators will be given by polynomials in ðzi − zjÞ−1 and in
z−1i . For the purposes of this Letter, we may state our
holographic dictionary as a match between OPEs in the 2D
defect CFT and collinear limits of scattering amplitudes in
the bulk. Equivalently, we conjecture a match between CFT
correlators and WZW4 amplitudes on Burns space, up to
terms depending on the z−1i .
If we wanted to recover scattering amplitudes, and not

just their collinear limits, we would need to determine the
one-point functions of Ja½k; l� in our defect CFT. We hope
to return to this in the future.
Tests of the duality.—Two-point functions: Ampli-

tudes in Euclidean signature can be defined and computed
via the on-shell effective action [52,53], and then analyti-
cally continued to more physical signatures if necessary. To
test our duality, we begin by computing the two point
amplitude of WZW4.
Let ϕi ≡ ϕaiðzi; λ̃i _αÞ, where i is a particle label. The two-

point tree amplitude of WZW4 is given by the symmetrized
on-shell kinetic term

Að1; 2Þ ¼ N
8π2

Z
C̃2

∂∂̄K ∧ trð∂ϕ1 ∧ ∂̄ϕ2Þ þ ð1 ↔ 2Þ: ð22Þ

Calculating this on Burns space by plugging in the
expansion (18) for ϕ1, ϕ2 reveals a delightfully simple
result:

Að1; 2Þ ¼ −
N
z212

J0

 
2

ffiffiffiffiffiffiffiffi
½12�
z12

s !
trðTa1Ta2Þ; ð23Þ

with J0 denoting a Bessel function of the first kind. Up to
the color factor, this matches the two-point amplitude of a
conformally coupled scalar on CP2 first found in [32].
Under our proposed identification (21), if we normalize

the generators so that trðTaTbÞ ¼ 2κab, then this exactly
matches with the coefficient of the identity operator in the
OPE of Ja½λ̃�ðzÞ. Indeed, we can resum the coefficient of
the identity operator 1 in (12) to get
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Ja½λ̃1�ðz1ÞJb½λ̃2�ðz2Þ ∼ −
2Nκab1
z212

J0

0
B@2

ffiffiffiffiffiffiffiffi
½12�
z12

s 1
CA: ð24Þ

We derive (23) at Oðz−212 Þ in Supplemental Material [26],
with more details to appear in [25].
OPE coefficients: Define the “holographic OPE” ϕ1 ·

ϕ2 between two states ϕ1;ϕ2 by demanding that the linear
combination

ε1ϕ1 þ ε2ϕ2 þ ε1ε2ϕ1 · ϕ2 ð25Þ
satisfy the nonlinear equations of motion of (14) modulo ε2i .
The two-point amplitude of the (off-shell) state ϕ1 · ϕ2 with
a third state ϕ3 gives rise to the three-point amplitude of
ϕ1;ϕ2;ϕ3 (on symmetrization over 1,2,3) [54,55].
From the equation of motion of (14), the OPE satisfies

∂∂̄K ∧
�
∂∂̄ðϕ1 ·ϕ2Þ þ

½∂ϕ1; ∂̄ϕ2� þ ½∂ϕ2; ∂̄ϕ1�
2

�
¼ 0; ð26Þ

having used ∂∂̄K ∧ ∂∂̄ϕi ¼ 0 to drop ∂∂̄K ∧ ½∂∂̄ϕ1;ϕ2�,
etc. The solution of (26) for ϕ1 · ϕ2 is found to be

−
Z
v∈C̃2

Gðu; vÞ ∂∂̄K ∧ ð½∂ϕ1; ∂̄ϕ2� þ ½∂ϕ2; ∂̄ϕ1�Þjv; ð27Þ

where Gðu; vÞ for u _α; v _α ∈ C2 − f0g is the massless scalar
propagator on Burns space

Gðu; vÞ ¼ −
1

8π2
1

ku − vk2 þ kuk−2kvk−2j½uv�j2 ; ð28Þ

and ½uv� ¼ ϵ _α _βu
_βv _α as usual. Equation (28) can be derived

by a conformal rescaling of the propagator of a conformally
coupled scalar on CP2 given in [56].
Plugging in (28), we have evaluated (27) on Burns space

to first order in ½1 2� (and singular orders in z12)

ϕ1 · ϕ2 ∼
fca1a2
z12

ϕcðz2; λ̃1 þ λ̃2Þ −
½12�fca1a2

z212

Z
1

0

dω1

Z
1

0

dω2 ϕcðz2;ω1λ̃1 þ ω2λ̃2Þ þOð½12�2Þ: ð29Þ

The result (29) matches the chiral algebra OPE displayed in
(12) under the dictionary (21).
Last, one can also directly compute the three-point

amplitude of WZW4 by plugging the ϕi into the cubic
interaction vertex of (14). At zeroth order in the square
brackets ½1 2�, ½2 3�, ½3 1�, we find a current algebra three-
point function

−2Nfca1a2κca3
z12z13z23

ð30Þ

which enables us to directly probe the jaðz1Þjbðz2Þ OPE.
We derive (30) in Supplemental Material [26].
Discussion.—We have presented a top-down toy model

of holography in an asymptotically flat spacetime, moti-
vated by constructions from celestial holography, twisted
holography, and twistor theory. Following the standard
AdS=CFT dictionary, we have presented explicit two- and
three-point checks relating chiral algebra OPEs with
asymptotic bulk observables in Burns space.
As is familiar from the AdS case, these computations did

not rely on the presence of dynamical gravity in the bulk.
At tree level, the closed string sector of our duality
describes the Kähler subsector of self-dual conformal
gravity on Burns space. The presence of defects at the
antipodes of CP1 in our dual CFT is closely related to
fixing the diffeomorphism invariance of bulk gravity to a
gauge whose coordinates are adapted to the Kähler

structure. We will return to this as well as present checks
of our duality involving the closed string sector in [25].
Clearly, it would be desirable to buildmodels inwhich one

could better access features of dynamical (quantum) gravity
like bulk reconstruction, black hole transitions, spacetime
entanglement, and quantum information, etc. Likewise, since
our twistorial theory is highlynongeneric, itwill be important
to better understand which features may be relaxed (and
how), and which break down, in more realistic examples.
Nevertheless, we believe our toy model, with its twisted

string origins, is a concrete and illustrative starting point for
asymptotically flat holography in string theory. Twisted
holography is also sensitive to certain nonperturbative effects
in N [57], and it will be enlightening to formalize the map
betweenOðNÞ effects in the bulk andboundary (gauge theory
instantons/Skyrmions, bulk giant gravitons,…), as well as
OðN2Þ effects, perhapsby studying the chiral algebra onother
boundary geometries (see also [58]) and/or finding connec-
tions to Kleinian black holes analogous to those in [59].
It is also worth exploring twisted holography for self-

dual Einstein gravity, starting from its twistorial uplifts like
the ones studied in [60]. Candidate theories for such a
duality could be built along the lines of the twistor sigma
models of [61–63]. The backreacted geometry could again
be Burns space, which curiously can also be viewed as an
Einstein-Maxwell instanton [64,65]. Many other curved
backgrounds relevant to celestial holography have also
arisen in [66–69], and it will be worthwhile trying to find
their uplifts to possible string theory backgrounds.
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