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Continuous O(d, d) global symmetries emerge in Kaluza-Klein reductions of D-dimensional string
supergravities to D — d dimensions. We show that the nongeometric elements of this group effectively act
in the D-dimensional parent theory as a hidden bosonic symmetry that fixes its couplings: the f symmetry.
We give the explicit § transformations to first order in ' and verify the invariance of the action as well as

the closure of the transformation rules.
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Introduction.—String theory provides a quantum
completion of general relativity, predicting precise
higher-derivative corrections to the Einstein equations.
The interactions, determined from scattering amplitudes
of string states or conformal invariance of the world sheet
theory, contain hidden footprints of the string dualities. In
particular, closed strings can wrap around noncontractible
cycles in spacetime, giving winding states that have no
analog for particle theories and allow T duality. This is a
discrete O(d,d) symmetry that establishes the physical
equivalence of string theories on dual backgrounds with
very different geometries [1]. Its footprints appear as a
continuous O(d, d) rigid symmetry in compactifications of
the string effective field theories on d-dimensional tori [2],
to all orders in o' [3].

The couplings in the higher-derivative expansion of the
string (super)gravities can then be predicted by demanding
the emergence of O(d, d) symmetries after compactifica-
tion. Although this procedure is in general tedious, as it
requires nontrivial field redefinitions to make the symmetry
manifest, it has been successfully pursued up to order o3
[4]. An alternative procedure explores symmetry principles
that determine double field theory interactions, either
through higher-derivative deformations of generalized dif-
feomorphisms [5] or double Lorentz symmetries [6,7]. The
invariant action can then be downgraded to supergravity
with all the couplings fixed.

The former method involves heavy brute force compu-
tations that become nonviable after a few orders, while the
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latter is currently confronted with an obstruction [8]
starting at the quartic Riemann interactions common to
all string theories [9]. We are then at a stage that requires
simplifications in the first approach and clarifications in the
second one.

The key observation introduced in this Letter is that the
appearance of O(d, d) symmetries in the D — d-dimensional
theory can be assessed already in the D-dimensional
parent action. The idea is extremely simple and goes as
follows. Starting with a string effective field theory in D
dimensions, the Kaluza-Klein reduction to D — d dimen-
sions, keeping only the massless modes, consists of three
steps: (i) Split the D spacetime coordinates into D —d
external and d internal directions and impose that the fields
are independent of the internal ones. (ii) Propose a Kaluza-
Klein parametrization of the higher-dimensional fields in
terms of those in lower dimensions. The purpose of this step
is to obtain fields with standard transformation properties
with respect to the local symmetries. (iii) Enforce higher-
derivative field redefinitions that allow assembling the
degrees of freedom into O(d, d) multiplets, so as to make
the O(d, d) symmetry manifest and not corrected by higher
derivatives. Some cases require including extra gauge
degrees of freedom [13].

The last two items are just field redefinitions. What they
do is to take the D — d effective action obtained directly
from the D-dimensional one, in which derivatives are
nonvanishing only in the external directions, to a scheme
in which the symmetries are manifest. These redefinitions
are purely aesthetical, since the symmetries, though hidden,
are still there. Hence, there must be a way to identify the
O(d,d) symmetry directly in the D-dimensional action.
This is what we will show in this Letter.

While the geometric subgroup of O(d, d), consisting of
rigid d-dimensional diffeomorphisms and 2-form shifts,
acts trivially with no higher-derivative corrections, the
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nongeometric sector parametrized by a bivector f [14] fixes
entirely the effective action in the scheme in which it looks
exactly like the higher-dimensional theory. In other words,
the nongeometric sector fixes the higher-dimensional
action, and it does so by acting effectively as if it were
a symmetry in D dimensions.

The Letter is organized as follows. In the next section,
we expose the f invariance of the two-derivative universal
string supergravity. Then, we derive the first order &
corrections to the f transformations in the generalized
Bergshoeff-de Roo scheme and verify closure together
with the local symmetries. This is followed by some final
remarks in the last section.

The f symmetry to lowest order.—Each term in the
universal two-derivative Neveu Schwarz-Neveu Schwarz
action

S—/de —ge™ <R—4(V¢)2+4D¢—1—12H2> (1)

is manifestly invariant under local D-dimensional diffeo-
morphisms and gauge transformations of the two-form.
These symmetries in turn contain GL(D) x RIP(P=1)/2] a5 a
rigid continuous subgroup, infinitesimally parametrized by
a, and B, acting on E,, = g, + b, and ¢ as follows:

80, = —d}0,, (2a)

8E,, = B,, — a,E,, — dJE,,, (2b)
Loy

S5 = =5 . (2¢)

This is the geometric subgroup of O(D, D), which addi-
tionally contains nongeometric elements parametrized by a
constant bivector S,

5E/w == ;tpﬁpGan (33)

5 =3P By (3b)

These nongeometric transformations are not symmetries of
supergravity (1). Demanding invariance under the full
O(D, D) group requires doubling the spacetime coordi-
nates and adding extra terms in the action, as is known from
double field theory [16]. This is not the route that we follow
in this Letter: here we deal with pure supergravity.

Even if D-dimensional supergravity is not invariant
under O(D, D), we know that its compactification on T¢
must be O(d,d) € O(D, D) symmetric. Operationally, the
compactification amounts to the assumption that the fields
do not depend on the internal directions, which implies
truncating the derivatives to be purely external. In such
case, the action gains the full O(d, d) symmetry, given by

the trivial embedding into O(D, D) such that the para-
meters contain only internal components. Then, (3) effec-
tively becomes a symmetry of (1) under the constraint

pa,... = 0. (4)

As a consequence, the O(d, d) symmetry of (1) compacti-
fied on T can be determined, for all practical purposes,
directly in (1) through the action of (3) constrained as in (4).

Checking the f invariance of the action turns out to be
easier in the frame formulation, where flattening the indices
of the fields with the frame and defining flattened variations

e,y = €ade,y,, by, = €a€46b,,, (5)

the transformations take the form

1
5eab:_bacﬂi’ 5bab:_ﬂab_bacﬂ6dbdbv 5(]5:5562.
(6)

These in turn dictate the variations of the tensors and
connections that appear in the action (see the Supplemental
Material [17] for details on the notation)

[6,D,] =0, (7a)
d 1 d
Weap = ﬁ[aHb]cd - EﬁcHabd’ (7b)
5Habc = 6W[dacﬁb]d7 <7C)
L .
5(va¢) = EﬂLdHacd» (7d)

1
5(vavb¢) = EﬂCdv(aHb)cd - ﬁ“WZ<QHb>cd
-pH pyeaVip. (7e)
To derive these expressions, we have used (4) and the
fact that f* is constant and antisymmetric, which in turn
implies
Daﬁbc = 4ﬁd[bw[cj1a]7 ﬁabwabc =0. (8)
To prove the invariance of the action (1) is now trivial,
taking into account that the above transformations
yield
8(\/=ge™2?) = 0, (9a)
OR = _2ﬁCdVbecd + SﬂdecabHab, (9b)

5(V¢)2 = HpqV' . (9¢)
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1
ollp = EﬁCdvahcd — o HY
+ fHpedV' P, (9d)
SH? = 12w, ., H . (9e)

In fact, the f invariance of a generic combination of
terms preserved by the local symmetries

0 =68[R+ m(Ve)? + n¢p + pH?|
= ﬁCdvabcd <_2 + g) + ﬂCda)cabHZb (5 —-n+ 12P)
+ fH gV p(m + n) (10)

fixes the value of the coefficients to

(11)

selecting (1) as the unique S-symmetric theory.

The f transformations realize the nongeometric sector of
O(d, d) as a hidden symmetry in the standard supergravity
scheme. Instead, they become both geometric and manifest
in the so-called f-supergravity scheme [18], where the
nongeometric sector is realized by the B shifts, which
should then fix the corresponding couplings.

Together with Lorentz transformations, (6) close into the
bracket

(6182 =812 Az =2 Paye +2A5 Ay (12)
The B symmetry to first order.—In the biparametric

(a,b) generalized Bergshoeff-de Roo scheme, all string
effective actions up to first order in o are included in [19]

/de\/_e $(LO) 4 aLl —|—bL N, (13)

where the lowest order Lagrangian L(©) is defined in (1),
and the first order one can be written in a flattened fashion
with

1 R
Lt(ll) — ZHab(?QEIb)C _ gRizb)cdR(_)ade’ (14&)
1 1
) = Ll LR pow
Defining wfgz :a)abcj:%Habc, these expressions
contain
(£ _ pFe (+)d (H)e  (£)d
Qupe = LdDwJ —i—a)@d Wy, wa
2 (1)e (B)f (+)d
+ 50 @ 0 (15)

) _ (+) (H)e (i)
Ripea = 2D(awy) 4 + 208, ecd )+ 20 Dyl Dplog (16)
We look for measure preserving f transformations that
tie the variation of the dilaton to that of the frame field to all
orders,

5(/Ge ) =0 = 54;:%5@3. (17)

The f invariance up to first order is then guaranteed by

/de =g~ (SVLO +a5O LY +bsO L) =0, (18)

where 6(°) denotes the lowest order variations of the
previous section.

To find 5(1), the first order o corrections to the S
transformations, we will consider an expansion in powers
of the fluxes @, H 5., and D ,¢. This is a useful strategy
that serves as an organizing principle, mimicking a back-
ground field expansion. The difference is that fluxes are
composite fields, and hence obey Bianchi identities (BIs)
that relate different orders, namely, (A.5), (A.7), and (A.8).
To remove ambiguities, one uses the leading terms in the Bls
to take the leading order to a minimal form at the expense of
introducing subleading terms. Once the leading order is
fixed, one moves to the next order and again takes it to a
minimal form using Bls at the expense of inducing further
higher-order terms, and so on. As an example, the lowest
order equations of motion admit a flux expansion of the form

1 1
Abab :EVCHZb—VCqﬁHZb :chHflh‘i‘"', (193)
1 d
Aeub =-2 Rub + Zv(avh)¢ - ZHucdH?a
— —4D,Dyp — 2D 00, + 2D, aC, + -+, (19b)

where the dots represent quadratic terms, which are sub-
leading with respect to those that we have written explicitly.
The way the lowest order in (19b)) looks like can be changed
using the BI (A.8), but once it is fixed, the subleading terms
are also fixed. Note that flat derivatives commute at lead-
ing order.

Integrating by parts, the first term in (18) can be taken to
the form

/ P /=5e- 25 LO)
= / dPx\/=ge 2 (8Vb Ab,, + 5 e Aey,).  (20)

On the other hand, since the lowest order transformation rules
(6) are known, we can readily compute 5 L (1) and determine
the first order deformations by requiring invariance of the
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action (18). To this end, it is convenient to consider the  where (h,3 —h) denotes terms with h fluxes H
particular case b = 0 and then infer the general transforma-  and 3 —/ fluxes @, and the dots represent subleading

tions from the fact that ngl) = L,(ll)[H — —H]. The leading expressions. Each term in this expansion can be taken to

. . .. the form
terms in the flux expansion of 50 LE,U turn out to be cubic, i.e.,

l a 1 C e a
Ly Jhamy (21) [6OL, )}(0,3) = Ae® |:4ﬁawbdewg:| —[D,T03). (22a)

F
Mw

1 a. ec ec 1 (o e a. 1 e C 1 e C a
[SOLS )](1,2) = Ab“b {—ﬂ Wa®peq + PO ®pea + Eﬂawbdew? + Aet? _gﬁaa)bcdHed - gﬂaHhcdwed = [D.T%12),

(22b)

1 1 )
[5(0)14(11)](21) bab{ pewt Hbcd__ﬂ feH pea— _ﬂuwbdeHde Eﬁ;Hbdew?e] +Ae |:EﬂZHhcdHéd:| —[DuT) 2.1y,

(22¢)
FOLY) g = wﬂﬂwmmﬂﬂmwmw (224)

where Ab,;, and Ae,;, contain the leading order of the equations of motion (19). The derivative D,T“ gives rise to a total
derivative when introduced in the action

D,T* =D, T* = 2D, ¢T* — ), T¢,  /—=ge D, T* = 0,(/—ge > eiT*), (23)

and hence it is not relevant for our purposes. Nevertheless, for completeness we give the explicit expression of the vector 7¢
to cubic order in [20].

Written like this, it is now trivial to extract the first order corrections to the f transformations proportional to the
parameter a, introducing (20) and (22) into (18). Note that there is no room for deformations with higher powers of fluxes,
as those would be of higher order in . Reinserting the parameter b, we obtain the full first order corrections to the f
transformations in the generalized Bergshoeff-de Roo scheme,

a+b b—a 1
sWe,, = Tﬂfa(wb)cdHid + Hb)cdwgd> + 1 Bl (wb)cda)gd + ZHb)cdH§d> , (24a)

1 1
ﬂ[awb]dewfe - gﬂfaHb]dere}

5(l>b — ec ec
ab (a )|:ﬂ a) wb ﬂ aewjt‘d )

b— 1 1
T [ﬁ“wd Hpyeq = p* 60 Hpyjeq — ﬂ[aa)b]deH‘cle - Eﬂ[cqu]dewge} . (24b)

We have verified that these transformations preserve the action to all orders in the flux expansion. Interestingly, one can
check that, in fact, the Lagrangian itself is invariant. As a final test we have also verified that these transformations close in
combination with the local symmetries of the theory, with respect to the following &’'-corrected brackets:

a+b b—a

Appap = 2ﬁf[aﬁ2b]c + 2Af[aA2b]c + 25?1 0y Ngjup — 4F c[aﬁub]dﬁg]d —4F Cdﬁlc[aﬁzb]d - [T H,q + Twecd:| ﬁfl [an]Aéf

ef b—a ef
- (a—l—b)a)df "‘7de (f i, +(0[ )ﬁ[lb]eﬂz]cﬂ

2
v a+b ab ab
j'12,(4 = 45[16[ /12 T(A[l ayﬂZ] 2ﬁ AZ ub) (b )(A[ 9 AZ]ab +ﬂ[1 auﬁZ]ub)’
= 2640,8 + P, 25)
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where ¢ is the vector that generates diffeomorphisms and A
is the one-form that generates the gauge transformations of
the two-form, and we have also defined

b—a

3 a)(Cde)Cd.

a

a+b 1
Fab = T (a)acdwid + ZHacdH[Cyd> +

(26)

Conclusions.—We showed that the nongeometric sector
of O(d,d) effectively acts in D dimensions as a hidden
symmetry that fixes the couplings predicted by string
theory to correct the Einstein-Hilbert action. In this sense
it plays the same role as (i) supersymmetry, but applies, in
general, to all string effective actions even if not super-
symmetric, as it is purely bosonic; (i) Kaluza-Klein
reductions, but does not require the redefinitions intended
to make the duality symmetry manifest; (iii) double field
theory, but is free from the obstructions signaled in that
context due to the constraint (4).

The explicit transformation rules that preserve the
action (13) up to first order in « are given in (6)
and (24), and the verification that they close together with
the local symmetries is presented in (25).

We would like to highlight two potential important
applications of our Letter: (i) The invariance of the action
implies that the equations of motion are covariant under /3
transformations. They can then be used as a solution
generating technique, becoming a powerful tool to com-
pute higher-derivative corrections to nongeometric back-
grounds like 7 folds, from standard solutions in
supergravity. (ii)) Most of the current efforts in the field
are focused in understanding the duality structure of the
quartic Riemann interactions common to all string theo-
ries. Although the full set of couplings were recently
computed using duality arguments [4], finding the f
transformations that preserve the action will help in
identifying the field redefinitions that connect with duality
covariant variables, as in the Bergshoeff-de Roo action
described here. This would not only clarify the origin of
the obstructions that prevent uploading these couplings to
a double field theory [8], but could also lead to finding a
systematic iterative method to obtain higher-derivative
terms, such as the biparametric generalized Bergshoeff—de
Roo identification of [7].
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TG — — E DthL'dHcdeﬁae _ R DbHcdeHbcdﬂae + g Dthcdﬁaewecd + g Dthdeﬂacwhde

1 ) 1 1 1 .
+ 3 Dyo"“H .4.p" + 3 Dyw,g.H"¥po — 1 Dy w, g — 1 Dy, g% 0%

1 1 1 1
+ 3 D,¢H"H 4, p* — 1 Dy pH  B*w,q — I Dy¢H 4. "% + 5 Dypp*“ w4,
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16
1

8
1

“ 8

1 1 1
- Z Hbcdﬁbewgfw;'d + Z Hbcdﬂefwzba);'d - E Habcﬂdea)bdfwj;. + Zﬂaba)bcda)cdwef

1 1 1 1
_ HZchdeHdefﬂcf + Z HabcHZdﬂdfwcef + Z HabCHbdeﬂdfw;'C __ HZCHdefﬂbdwcef

8

| S| , 1 . 1 : ‘
+— HdeHbceﬂaew{lf + g Hbcdchﬁefw.?d + Z Hzcﬂbdwcefwdef + 5 Habcﬁdea)hdfwge

. 1 1 1
I Hbcdﬂabwéda);f + g Hbcdﬂaea)befa)f __ Hdeﬂaewebcw;d _ g Hdeﬁaewzcwfde

e

I

1 1 1 1
- Zﬁabwéew?ewic - Eﬂbca)badwcef Dger + gH avc H? B w14, +— HypegH wa +

where the dots represent terms of quartic order in fluxes.
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