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Ultracompact objects with light rings (LRs) but without an event horizon could mimic black holes (BHs)
in their strong gravity phenomenology. But are such objects dynamically viable? Stationary and
axisymmetric ultracompact objects that can form from smooth, quasi-Minkowski initial data must have
at least one stable LR, which has been argued to trigger a spacetime instability; but its development and fate
have been unknown. Using fully nonlinear numerical evolutions of ultracompact bosonic stars free of any
other known instabilities and introducing a novel adiabatic effective potential technique, we confirm the
LRs triggered instability, identifying two possible fates: migration to nonultracompact configurations or
collapse to BHs. In concrete examples we show that typical migration (collapse) timescales are not larger
than ∼103 light-crossing times, unless the stable LR potential well is very shallow. Our results show that the
LR instability is effective in destroying horizonless ultracompact objects that could be plausible BH
imitators.
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Introduction.—A few years after the first gravitational
wave detection from a collision of two black holes (BHs) [1]
and the first image of a BH resolving its horizon scale
structure [2], there is a scientific consensus about the
physical reality of BHs. Yet, both the inability to observa-
tionally prove the “BH hypothesis” [3–6] and its challenging
and far-reaching theoretical consequences [7–9], demand a
thorough scrutiny of its alternatives.
In this spirit, a variety of horizonless exotic compact

objects (ECOs) have been proposed [10]: the “ECO
hypothesis.” Any putative ECO model must overcome
theoretical and observational tests to become a contender.
Of special interest are ultracompact ECOs (UCOs, for
short), i.e., possessing light rings (LRs): planar bound
photon orbits that asymptotically flat BHs must possess
[11]. UCOs can imitate the (initial) ringdown [12,13] and
(to some extent) the shadow [14] of BHs making them
plausible BH foils if they are dynamically viable.
Conditions for dynamical viability include (i) a plausible

formation mechanism, (ii) sufficient stability against the
ubiquitous astrophysical perturbations, and (iii) embedding
in a physically sound effective field theory. It was shown in
[15] that, under generic assumptions, an equilibrium UCO
that forms from smooth, quasi-Minkowski initial data, must
have at least a pair of LRs, one of which is stable. It has been
argued that the existence of stable LRs can trigger a
spacetime instability, by trapping massless perturbations
that eventually pile up and backreact on the spacetime
[16–18]. The development and fate of this hypothetical
generic obstruction to UCOs has, however, been so far
unknown.

In this Letter we present the development and fate of the
LR instability in concrete models, providing evidence that
UCOs with a plausible formation mechanism are destroyed
in astrophysical timescales, therefore questioning their
viability as BH alternatives.
UCOs and stable LRs.—Consider equilibrium, finite

Arnowitt-Deser-Misner (ADM)massM, asymptotically flat,
UCOs described by a stationary, axially symmetric, circular
metric [19], gμν. In ðt; r; θ;φÞ coordinates, such that ∂t and
∂φ are the commuting Killing vectors adapted to stationarity
and axisymmetry, respectively, (see Refs. [11,15] for
details), the effective dimensionless potentials

V� ¼
gtφ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q

gφφ
M; ð1Þ

determine LRs (if they exist) as critical points: ∇V� ¼ 0.
The � sign is connected to the LRs rotation sense.
One can associate a topological charge, Qi to individual

LRs [11,15]. The total spacetime topological charge Q ¼P
LRs Qi is then invariant under smooth spacetime defor-

mations preserving the asymptotic structure and internal
regularity. This means that any horizonless, asymptotically
flat, everywhere regular UCO has the same topological LR
charge as Minkowski spacetime, Q ¼ 0. Since unstable
(stable) LRs have Qi ¼ −1 (Qi ¼ þ1), this implies that in
the dynamical formation of UCOs LRs emerge as a stable-
unstable pair. This conclusion does not depend on the
specific (metric) theory of gravity or on the details of the
(incomplete) gravitational collapse [20]. It implies that for
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UCOs with a plausible formation mechanism, the existence
of a (Schwarzschild-like) unstable LR—as to imitate BH
phenomenology—is accompanied by a potentially danger-
ous stable LR.
Adiabatic effective potential.—We wish to follow the

dynamics of UCOs. It has been argued that the instability
triggered by stable LRs is nonlinear [16]. Unveiling its final
state, moreover, requires a nonlinear analysis. Thus, we
shall resort to numerical evolutions of appropriate UCO
models, using a 3þ 1 spacetime split:

ds2 ¼ −N2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð2Þ

where N is the lapse function, β is the shift, and γ is the
projected three-metric on the t ¼ constant slice Σt, which
uses Cartesian-like coordinates fx; y; zg.
To monitor the evolution of LRs we introduce, from the

numerical evolution 3þ 1 data in (2), an adiabatic effective
potential (AEP) analog to (1) at each time step, takingM in
(1) to be Mt, the UCO mass at each time slice t, to allow
comparisons at different t. The AEP carries physical
information if the evolution is sufficiently slow and depar-
tures for axial symmetry are mild. The lack of stationarity
and axisymmetry can, moreover, be washed away by
appropriate averaging procedures.
A detailed discussion of the assumptions in constructing

the AEP is given in the Supplemental Material [21] (SM)—
Sec. I; here we state the key ones: (i) At each t, approximate
Killing vectors ∂t and ∂φ exist for the evolving, asymptoti-
cally flat and approximately circular UCO. This implies that
at each point a λ ∈ R exists such that ∂φ ¼ λβ. (ii) ∂φ is
assumed to be tangent to surfaces with x2 þ y2 ≡ r2 ¼
constant (but r needs not be a geometric distance). At each t

the coordinate centerO: ðx; yÞ ¼ ð0; 0Þ is linearly shifted to
the UCO center, to account for a possible (slow) drift of the
star, which indeed occurs in the examples below. (iii) The
evolving UCO is assumed to possess a Z2 reflection
symmetry around the equatorial plane surface z ¼ 0.
Under these assumptions, the ðgtt; gtφ; gφφÞ data neces-

sary for the AEP (1) is obtained from the 3þ 1 data in (2),
ðN; β; γÞ as follows (see SM, Sec. I, for details).
(1) gtt ¼ −N2 þ γijβ

iβj; (2) gφφ determines the perimeter

P of a circumference r ¼ constant, P ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφðrÞ

p ¼
R
2π
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γxxy2 − 2γxyxyþ γyyx2

q
dϕ, where the auxiliary coor-

dinate ϕ is defined via x ¼ r cosϕ, y ¼ r sinϕ, and may
differ from φ. Computing P numerically via this integral,
yields gφφ; (3) since gtφ ¼ gφφβφ, then gtφ ¼ �
ffiffiffiffiffiffiffigφφ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
γijβ

iβj
q

. The sign is positive (negative) if βy > 0

(βy < 0) when y ¼ 0.
Finally, two averaging procedures are used: (1) To wash

away (mild) axial-symmetry deviations, we work with
averaged functions over surfaces with r ¼ constant, e.g.,
hN2i≡ ð1=2πÞ R 2π

0 N2dϕ. Then, hgtφi≡� ffiffiffiffiffiffiffigφφ
p ffiffiffiffiffiffiffiffiffiffiffiffihβ · βip

,
and hgtti≡ −hN2i þ hβ · βi. (2) To wash away oscillations
in the UCO’s time evolution around a trend, we introduce
time-averaged potentials V�

�: V
�
�ðr; tÞ ¼ ½2TðtÞ�−1 R t

t−2TðtÞ
V�ðr; τÞdτ, where TðtÞ is a measure of the oscillation period
of the lapse NðtÞ, taken to represent physical oscillations of
the evolving UCO.
Testing UCO dynamics with bosonic stars (BSs).—

Testing the dynamical viability of UCOs, requires models
obeying conditions (i) and (iii) in the Introduction, to then
assess the impact of LRs on condition (ii). The former are
obeyed in families of bosonic stars (BSs) [22,23], which can
form via gravitational cooling [24,25] and emerge in simple
and robust effective field theories involving scalar or vector
fields minimally coupled to Einstein’s gravity [26], where
numerical evolutions are under control [30]. Additionally,
our analysis requires UCO models free of other instabilities
(e.g., perturbative or from ergoregions), which would mask
the impact of LRs. This rules out the simplest, spherical
scalar/vector BSs, which only become UCOs in a perturba-
tively unstable regime [31].
We have identified two appropriate models of BSs for

studying the LR instability, both described by the
Lagrangian density, L ¼ R=ð16πGÞ þ Lm, where R, G
are the Ricci scalar and Newton’s constant [32]. Model 1
has Lm ¼ −F αβF̄ αβ=4 − μ2AαĀ

α=2, describes a complex
Proca model with mass μ [33], and we focus on its
fundamental, spinning, mini-Proca star solutions [34,35].
They are labeled by their ADM mass M or their oscillation
frequency ω and are dynamically robust [36]. These Proca
stars become UCOs for ω=μ≲ 0.711; an ergoregion
emerges for ω=μ≲ 0.602 and perturbative instabilities are
expected beyond the maximal M, for ω=μ ≲ 0.562—Fig. 1

FIG. 1. Space of solutions for model 1 (main panel) and model
2 (inset). Starting at ω=μ ¼ 1 and moving leftwards along the
solutions curves, one encounters the first solution with a LR
(ergoregion) at the pink diamond (blue star). The maximal mass
BS, at which an unstable mode is expected to appear (see, e.g.,
[38]) is marked with a black pentagon.
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(main panel). Model 2 has Lm ¼ −∂αΦ∂
αΦ̄ − μ2

jΦj2½1 − 2jΦj2=σ20�2, describes a self-interacting complex
scalar model with mass μ and coupling σ0. We focus on its
fundamental, spinning, solitonic boson star solutions
[37,38], again labeled by M or ω, choosing the illustrative
value σ0 ¼ 0.05 [39]. There is a dynamically robust rela-
tivistic branch of solutions for ω=μ≲ 0.493 [38], that
become UCOs for ω=μ≲ 0.188; perturbative instabilities
are expected beyond the maximal M, for ω=μ ≲ 0.132 and
the ergoregion appears in this unstable branch for
ω=μ ≲ 0.134—Fig. 1 (inset) [40].
The just describedProca (solitonic boson) stars in the range

0.602 < ω=μ < 0.711 (0.132 < ω=μ < 0.188) provide tests
for the LR instability (dashed line segments in Fig. 1). Using
them as initial data, we have performed fully nonlinear
numerical evolutions of the Einstein-bosonic systems with
spacetime variables in the Baumgarte-Shapiro-Shibata-
Nakamura formulation and the EINSTEIN TOOLKIT [42,43]
evolved using MCLACHLAN [44,45] and LEAN [46]—codes
available in [47] and described in [31,48,49].
Results model 1: migration.—We have evolved the

aforementioned Proca stars up to tμ ¼ 104 and confirmed
the existence of an instability for the UCOs. Figure 2 (main
panel) shows the time at which the instability starts vs ω
[50]. The timescale tends to diverge when approaching the
first star with a LR (ω=μ ≃ 0.711), thus associating the
instability with UCOs. For some of the models with LRs we
could not see the development of instability, since the
simulations last only up to tμ ¼ 104 but our results suggest
that they will become unstable if evolved for longer. The
instability is not seen for stars with ω=μ > 0.711.
To grasp the nature of the instability, Fig. 3 shows

snapshots of the time evolution of the energy density on the
equatorial plane for stars with ω=μ ¼ 0.68, 0.69, 0.70, and
angular momentum density for ω=μ ¼ 0.68. The energy
density first acquires an octogonal shape (see second row of
Fig. 3) which evolves into a “starfishlike” pattern (third

row). The axisymmetry of the star is mildly broken and the
star suffers a small kick, slowly moving away from the grid
center. The instability triggers a balanced mass and angular
momentum loss, mostly carried by the Proca field, with
almost no gravitational wave emission. This balanced loss
allows a migration to less massive and compact but still
spinning Proca stars without LRs—see arrow in Fig. 1 and
SM (Sec. II) for details.
Further clear evidence that the fate of this instability is a

non-UCO spinning Proca star is obtained by examining the
averaged AEP V�

− [51]. At each time slice, this potential has
the typical radial profile for an UCO displaying a stable and
an unstable LR [Fig. 4 (top, inset)] from which one can
extract a potential depth h, defined as the (positive)
potential difference of V�

− computed at the LRs. h can
be represented as a function of time in the evolutions.
Figure 4 (top) shows it for ω=μ ¼ 0.68. It is clear that the
depth hðtÞ reaches zero at tcμ ≃ 7480, i.e., the two LRs
have merged in a finite time. This merger is further seen on
the bottom panel of Fig. 4, where the perimetral radius of
both LRs converges to a single value. After this point the
LRs essentially disappear in terms of V�

−. However, for a
limited couple of instances right after t > tc the LRs can be
recreated and destroyed again due to sporadic fluctuations
of the potential (not shown in Fig. 4), before disappearing

FIG. 2. Instability timescale for model 1 (main panel) and
model 2 (inset). The dashed vertical line marks the first UCO.

FIG. 3. Snapshots of the energy density (and angular momen-
tum density in middle left column) of three spinning Proca star
UCOs with ω=μ ¼ 0.68 (left and middle left column), 0.69
(middle right column), and 0.70 (right column). Time runs from
top to bottom, given in code units.
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altogether. This confirms the migration robustly evolves in
the direction of destroying the LR pair. In the SM (Sec. I),
the time evolution of the AEP is further detailed, legiti-
mating the validity of the adiabatic approximation under-
lying the AEP.
Results model 2: collapse.—We have also evolved the

spinning solitonic scalar boson stars described above. In the
UCO region, ω=μ ≲ 0.188, we have again observed an
instability, absent for ω > 0.188 (but within the relativistic
stable branch). Its timescale again tends to diverge, as we
approach the critical frequency [Fig. 2 (inset)], correlating

the instability with the existence of LRs. The initial
development of the instability qualitatively resembles the
previous case in the loss of axisymmetry—see Fig. 5 for
evolution snapshots of the star with ω=μ ¼ 0.16. However,
the outcome is different; the star collapses and forms a
spinning BH, diagnosed by the emergence of an apparent
horizon (detailed in the SM—Sec. II). The culprit of this
different outcome may be the self-interaction potential, that
confines the star and suppresses the dissipation through
gravitational cooling, the essential channel by which
migration occurs in model 1. The AEP shows violent
oscillations and appears to deepen near the location of the
stable LR before the collapse, implying the technique loses
validity.
Remarks.—Proving the BH hypothesis is as challenging

as disproving the ECO hypothesis. A smaller, but inform-
ative step, is to rule out classes of inadequate models as BH
alternatives. The evidence shown in this Letter supports the
inadequacy, as BH foils, of a large class of UCOs, for which
a plausible formation mechanism exists via an incomplete
gravitational collapse of quasi-Minkowski initial data.
Even if such UCOs could form as a transient state, their
unavoidable stable LR triggers an instability that, generi-
cally, develops in a moderate timescale, either promoting
collapse to BHs or migration to a non-UCO. It remains to
be seen whether UCOs near the critical configuration, for
which the timescale can grow (likely) arbitrarily large, still
retain any effectiveness as BH foils, and if other fates are
possible for the LR instability, e.g., considering different
UCO models. It also remains an open problem to find a
practical estimate of the LR instability timescale in a
generic spacetime. One of our main results is a concrete
timescale within two specific models. The difficulty arises
from the putative nonlinear character of the instability.

FIG. 4. Top: potential-well depth h (illustrated in inset) as a
function of time for ω=μ ¼ 0.68. A guiding fit function (dotted
line) is defined in terms of the inverse time τ ¼ 1=t, with adjusted
constants fa; A; τcg. Bottom: the LRs’ circumferential radii
ffiffiffiffiffiffiffigφφ

p =Mt for different values of time t. The blue line is an
auxiliary spline interpolation to help convey the underlying
pattern. The time-averaged potential V�

− can suppress several,
but not all, oscillation modes of the raw potential V−. This is the
likely cause of the observed zigzagging of the red curve, a
manifestation of residual star radial oscillations around their
unexcited state (at that time).

FIG. 5. Time evolution of a spinning solitonic BSs with ω=μ ¼
0.16 which has LRs. (Left and middle left column) Energy
density. Time runs from top to bottom and then from left to right.
(Middle right and right column) Angular momentum density.
Both quantities are extracted on the equatorial plane.
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Perhaps some lesson can be taken from other gravitational
nonlinear instabilities, namely, the anti–de Sitter (AdS)
turbulent instability [52]. In fact, the trapping of modes in
the stable LR potential well has some conceptual similar-
ities with the trapping of perturbations in the AdS “box.”
There are mechanisms to avoid the conclusion in [15]

that UCOs have stable LRs; e.g., (i) topological non-
triviality; e.g., ultracompact wormholes, since such
UCOs are not diffeomorphic to Minkowski spacetime.
But any mechanism forming such macroscopic UCOs is
beyond general relativity and remains to be established;
(ii) nonaxisymmetry; but the known astrophysical compact
objects exhibit to a high degree axisymmetry; (iii) non-
circularity; but very few (analytic or numerical) solutions
describing compact objects in Einstein’s or modified
gravity without circularity are known.
The ability of ECOs to imitate BH phenomenology does

not demand LRs. Examples are known, both for gravita-
tional wave (e.g., [53,54]) and electromagnetic (e.g., [55])
observations, where ECOs without LRs could mimic, in
limited circumstances, some strong gravity BH features. It
seems implausible, however, that ECOs without LRs may
mimic all BH phenomenology and replace them entirely as
physical players in the Universe. Under this rationale, our
results challenge the ECO hypothesis as a complete
replacement of the BH hypothesis, but not as another
ingredient of the physical Universe.
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