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Lasers and Bose-Einstein condensates (BECs) exhibit macroscopic quantum coherence in seemingly
unrelated ways. Lasers possess a well-defined global phase while the number of photons fluctuates.
In BECs of atoms, instead, the number of particles is conserved and the global phase is undefined. Here, we
use gate-based quantum circuits to create a unified framework that connects lasers and BEC states. Our
approach relies on a scalable circuit that measures the total number of particles without destroying long-
range coherence. We introduce two complementary probes of global and relative phase coherence, study
how they are affected by measurements of the particle number, and implement them on a superconducting
quantum computer by Rigetti. We find that particle conservation enhances long-range phase coherence,
highlighting a mechanism used by superfluids and superconductors to gain phase stiffness.
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Introduction.—One of the fundamental principles of
quantum mechanics is that the number and the phase
operators are canonical conjugates [1]. Accordingly, in
systems with fixed numbers of particles, such as physical
gases and liquids, the global phase operator has maximal
uncertainty. This simple observation seems to contradict our
basic understanding of Bose-Einstein condensates (BECs),
superfluids, and superconductors, where phase coherence
emerges in spite of particle-number conservation. This
apparent contradiction is resolved by noting that, in these
systems, the phase coherence is imprinted in relative degrees
of freedom, which are unaffected by this uncertainty
principle. As a consequence, to probe the phase coherence
of a BEC, it is always necessary to perform an interfero-
metric experiment between two parts of the system [2].
Long-range coherence also occurs in systems that do not

conserve the total number of particles. The simplest
example is a laser, where the total number of photons
fluctuates, and the global phase is well-defined and can be
probed directly. An intermediate situation between BECs
and lasers is offered by BECs of light in optical cavities,
such as BECs of exciton-polaritons [9,10] and the BECs of
photons in dye molecules [11–13]. In these systems,
cavities increase the lifetime of the photons, making their
number a quasiconserved quantity and, under suitable
conditions, allowing them to reach a BEC state. Unlike
BECs of atoms, in BECs of light the total number of
particles fluctuates due to cavity losses and external
reservoirs [14,15]. The relation between these three
many-body states (lasers, BECs of atoms, and BECs of
light) has been the subject of a long-standing debate

[16–20], in part due to the absence of a single platform
where they can be studied on equal footing. Here, we show
how to use gate-based quantum computers to create these
states, and study their coherence and fluctuations.
BEC states of quantum bits.—The first step toward the

simulation of many-body states of bosons using a quantum
computer is to represent these states in the languageof qubits.
We address this challenge by considering the collective state
of N qubits and focusing on their fully symmetric subspace,
where the system behaves as a single spin of size S ¼ N=2.
We nextmap the state jS ¼ N=2; Sz ¼ −N=2i to thevacuum
of bosons and the creation or annihilation operators to the
spin rising or lowering operators S� ¼ Sx � iSy [1].
To simulate the coherent state of a laser, we use the

spin-coherent state obtained by rotating each qubit in the θ
direction of the XY plane:

jcoherenti ¼
YN

n¼1

1ffiffiffi
2

p ðj0in þ eiθj1inÞ: ð1Þ

The state jcoherenti is an eigenstate of Sþ with eigenvalue
Neiθ and is analogous to the coherent state of bosons,
which is an eigenstate of a with eigenvalue

ffiffiffiffi
N

p
eiθ.

Accordingly, the angle θ plays the role of the global phase
of the system. Without loss of generality, we focus on the
case θ ¼ 0, where the spins point in the X direction and
hSxi ¼ N=2. In accordance to the number-phase canonical
relation, in jcoherenti the number of particles fluctuates, as
detected by the standard deviation of Sz, δSz ¼

ffiffiffiffi
N

p
=2; see

Table I.
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We nowmove to BECs of light, which can be prepared in
states where both the global phase and the total number of
particles strongly fluctuate [14,15]. In our systems, such
state can be obtained by measuring Sz and keeping all
possible outcomes of the measurement. The resulting state
is described by the density matrix

ρdephased ¼
XN=2

s¼−N=2

δSz;sjcoherentihcoherentjδSz;s; ð2Þ

where δSz;s is the projection operator defined by
limϵ→0ðϵ=πÞ=½ðSz − sÞ2 þ ϵ2�, or any equivalent definition
of a delta function. For brevity, we will denote this state by
jdephasedi, in spite of being mixed. In BECs of light, the
total number of particles is measured by external baths or
reservoirs, while in our simulator we will achieve this goal
using ancilla qubits. The state jdephasedi can alternatively
be obtained by setting the global phase θ in Eq. (1) to be a
random variable with uniform distribution in ½0; 2πÞ and
averaging over all possible outcomes. In what follows, we
will show that this state is nevertheless characterized by
long-range phase coherence.
Finally, to simulate BECs of atoms, we project

jcoherenti to a subspace with a well-defined number of
particles. For concreteness, we assume that the N is even
and consider the projection over the subspace with N=2
atoms, or equivalently Sz ¼ 0,

jprojectedi ¼ AδSz;0jcoherenti ¼ jS; Sz ¼ 0i; ð3Þ

where A is a normalization factor. In the case of N ¼ 2

qubits, one has jcoherenti ¼ 1
2
ðj0i þ eiθj1iÞðj0i þ eiθj1iÞ.

By postselecting the state with Sz ¼ 0, one obtains the Bell
state jprojectedi ¼ eiθðj01i þ j10iÞ= ffiffiffi

2
p

, which is invariant
under the phase rotation θ → θ þ Δθ [1]. Interestingly, this
procedure allows one to create entanglement between two
qubits without having them interact directly, as proposed in
Ref. [21] and experimentally realized with superconducting
circuits in Ref. [22]. Here, we aim at extending this analysis
to large numbers of particles and studying their long-range
coherence [1].
Probing long-range coherence.—In analogy to the case

of a laser, the coherence of jcoherenti can be directly

measured by probing the expectation values of the spin
operator hSxi ¼ N=2. In contrast, for BEC states, the global
phase is undefined and hSxi ¼ 0. We now discuss two
complementary methods to probe the phase coherence of
these states.
The first method targets the phase correlations between

the qubits. In the two-qubit Bell state, the relative phase is
probed by a finite expectation value of the operator
hσþ1 σ−2 þ σþ2 σ

−
1 i ¼ 1, where σ�i are the rising or lowering

operators of the ith qubit. The many-body generalization of
this probe is the two-point correlator

Cð2Þ
N ¼ 1

2N2
hSþS− þ S−Sþi: ð4Þ

By expressing S� ¼ P
i σ

�
i , we obtain that Cð2Þ

N is the sum
of two-point correlations between each pair of qubits. In
this Letter, we consider states with hSzi ¼ 0, for which

Cð2Þ
N ¼ hS2x þ S2yi=N2 [23]. From a theoretical perspective,

a quantum state is phase coherent if Cð2Þ
N remains finite in

the limit ofN → ∞. In the technical language, this situation
corresponds to the spontaneous breaking of the Uð1Þ gauge
symmetry associated with particle-number conservation,
also known as off-diagonal long-range order [24].
We now show that the three states—jcoherenti,

jdephasedi, and jprojectedi—have long-range coherence.
Because these states belong to the fully symmetric subspace
with S2 ¼ NðN þ 2Þ=4, their coherence is related to the

variance of Sz through Cð2Þ
N ¼ hS2xi þ hS2yi ¼ hS2i − hS2zi.

In jcoherenti, the qubits are uncorrelated, such that hS2zi ¼P
ihðσzi Þ2i ¼ N=4 and

Cð2Þ
N;coherent ¼

N þ 1

4N
: ð5Þ

The dephasing process that leads to jdephasedi preserves Sz
and, hence, leaves the coherence unchanged:

Cð2Þ
N;dephased ¼ Cð2Þ

N;coherent: ð6Þ

Finally, during the creation of jprojectedi, hS2zi is reduced
from N=4 to zero. Accordingly, hS2x þ S2yi is increased by
N=4, leading to

Cð2Þ
N;projected ¼

N þ 2

4N
: ð7Þ

In the thermodynamic limit (N → ∞), Eqs. (5)–(7) tend to
the samevalue:1=4. This is a signature of the thermodynamic
equivalence of the canonical and grand-canonical ensembles.
Interestingly, for any finite N the projected state is more

coherent than the dephased one, Cð2Þ
N;projected > Cð2Þ

N;dephased.
We can explain this effect by noting that in jdephasedi there
is a finite probability to find a state with no particles

TABLE I. Many-body states of superconducting circuits, used
to simulate long-range coherence: jdephasedi is obtained by
measuring the total Sz and jprojectedi by postselecting the Sz ¼ 0
measurement outcome.

Many-body state Qubit state Coherence Number fluctuations

Laser jcoherenti hSxi ¼ N=2 δSz ¼
ffiffiffiffi
N

p
=2

BEC of light jdephasedi Cð2Þ
N ≈ 1=4 δSz ¼

ffiffiffiffi
N

p
=2

BEC of atoms jprojectedi Cð2Þ
N ≈ 1=4 δSz ¼ 0
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(jSz ¼ −N=2i), which does not possess any coherence. In
contrast, jprojectedi includes only states with N=2 particles
and its coherence is the maximum attainable one.
We now move to a second method to probe the

coherence of the BEC states based on the probability
distribution of physical observables, a method often
referred to as full counting statistics [25]. As explained
above, a BEC state is characterized by hSxi ¼ hSyi ¼ 0

along with large values of hS2x þ S2yi. This is possible only
if Sx and Sy have bimodal distributions with a high
probability of finding large absolute values. To address
the gauge invariance of the state, we probe the spin operator
in a generic direction θ on the XY plane, defined as

Sθ ¼ cosðθÞSx þ sinðθÞSy: ð8Þ
Figure 1 shows the discrete probability function of Sθ for the
three states of Table I in a system with N ¼ 10 particles,
using a color map in polar coordinates: the angular coor-
dinate of these graphs is θ and probes to the global phase of
the condensate; the radial coordinate refers to the possible
values of Sθ ¼ −N=2;…; N=2. The latter is related to the

coherence parameter by Cð2Þ
N ¼ π−1

R
2π
0 dθhS2θi=N2. The

distribution probability of Sθ can be probed by measuring
the components of each qubit in the θ direction of the XY
plane and summing the results [1,30].
The color map corresponding to jcoherenti, Fig. 1(a), is

strongly peaked at θ ¼ 0 and demonstrates that this state has
a well-defined global phase. In contrast, the color maps of
the BEC states jdephasedi and jprojectedi are rotational
symmetric and do not have a well-defined global phase.
Their long-range coherence is signaled by the large prob-
ability to measure jSθj ¼ N=2 (i.e., the outermost rings).
The two states can be distinguished by their different radial
dependence: In jdephasedi the probability distribution is
a monotonously increasing function of jSθj, while in
jprojectedi the probability of observing Sθ ¼ s exactly
vanishes if s − N=2 is an even number, giving rise to a
nonmonotonous behavior. The proof of this selection rule

relies on the conservation of the number of particles. Hence,
the difference between odd and even rings can be used as a
probe of the suppression of the fluctuations of the number of
particles in jprojectedi with respect to jdephasedi.
Algorithms for an ideal quantum computer.—BEC states

of atoms and photons can be prepared deterministically by,
first, rotating each qubit in the jþi state, giving rise to
jcoherenti, and then measuring Sz. To obtain the state
jprojectedi it is further necessary to postselect the outcomes
with Sz ¼ 0. Importantly, the probability of obtaining this
value is lower bounded by 1=N, showing that the number of
measurements required to obtain a fixed precision grows
linearly with the number of qubits (and not linearly with the
size of the Hilbert space).
The measurement of Sz can be achieved using

Na ¼ floor½log2ðNÞ� ancilla qubits, corresponding to the
binary representation of jSzj (see Ref. [31] for a related
algorithm). Each ancilla qubit interacts sequentially with
all the qubits, counting the total number of particles.
Specifically, we propose to rotate the ath ancilla by an
angle ϕa=2 with ϕ ¼ π=2a if the qubit is in the j1i state,
i.e., if a particle is present, or by −ϕa=2 if the qubits is in
the j0i state. At the end of the protocol, the ancilla is rotated
by ϕaSz. The state with Sz ¼ 0 is obtained by postselecting
the outcomes where all the ancillas returned to their initial
state [1].
In Fig. 2 we plot the value of the coherence parameters

Cð2Þ
N and hSxi along the process of creating the states

jdephasedi and jprojectedi, starting from jcoherenti. At
each step, we couple one additional qubit to the ancillas.
We observe that hSxi decreases monotonously and tends to

zero, while Cð2Þ
N has a nonmonotonous behavior and tends

to Eq. (7) or Eq. (6), depending on whether the value of the
ancillas is postselected or not. At the end of this protocol,
the probability function of Sθ corresponds to Figs. 1(c) or
1(b), accordingly. These plots can be used to check that the
protocol has successfully prepared the states jprojectedi or
jdephasedi, corresponding to, respectively, a BEC of atoms
and a BEC of light.

(a) (b) (c)

FIG. 1. Probability distribution of the operator Sθ, defined in Eq. (8), for a system of N ¼ 10 qubits in the states (a) j coherenti,
(b) jdephasedi, (c) j projectedi. The angular coordinate corresponds to θ and the radial coordinate to the size of Sθ ∈ ½−N=2; N=2�. The
color coding represents the probability of observing a specific value of Sθ for a fixed θ. Long-range coherence is signaled by the large
absolute values of Sθ.
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Implementation on a real quantum computer.—To real-
ize this protocol in a superconducting quantum computer,
we need to overcome several difficulties. First, in these
systems each qubit is coupled to at most three other qubits.
Hence, a single ancilla cannot be coupled with all the other
qubits at the same time. This problem can be solved in a
scalable way by considering a linear chain of qubits, such
that the ancillas are initially located at one side of the chain.
At each step, every ancilla interacts with a neighboring
qubit and is then swapped with the qubit. We will refer to
the combination of the controlled rotation of the ancilla and
the qubit-ancilla swap as aSWAP gate and explain below
how to implement it using native gates.
A common challenge of near-term quantum computing is

to compile proposed algorithms using as few native two-
qubit gates as possible. First, we note that the controlled-
rotation CRXðϕÞ gate is usually not a native gate. To
overcome this difficulty, we first rotate the ancillas in the
X direction, then use CPHASEðϕÞ gates to rotate the ancillas
around the Z axis, and, finally, measure them in the X basis.
The resulting circuit for the case of N¼4 qubits and Na¼1
ancillas is shown in Fig. 3(a). In the first layer, the upper
Hadamard (H) gate prepares the ancilla in theX direction and
the lower four prepare thequbits in the state jcoherenti.At the
end of the circuit, the first four qubits are found in aBEC state
and are measured in the θ direction of the XY plane to probe
Sθ. The last qubit represents the ancilla and ismeasured in the
X direction. The aSWAP gates can be implemented using
native gates for the Rigetti quantum computers, namely RZ,
CPHASE, and iSWAP [see Fig. 3(b)], giving rise to a circuit
with 2NNa two-qubit gates.

Using the latest quantumprocessor byRigetti, Aspen-M-2,
we were able to implement this circuit and obtain
satisfactory results for N ¼ 4 and Na ¼ 1. To improve
our results, we reduced the total number of gates by
avoiding swapping the ancilla with the first and last qubit,
obtaining a circuit with six two-qubit gates only [1]. We
used a rotation angle of ϕ ¼ π=2 such that the ancilla’s
postselection allowed us to project out the states Sz ¼ �2
and suppress the fluctuations of Sz. The resulting pro-
jected state is analogous to jprojectedi and, in particular,
is characterized by a reduced value of hSxi ¼ 1.17 < N=2

and an enhanced coherence Cð2Þ
4 ¼ 0.35 > Cð2Þ

4;coherent. The
probability distribution of Sθ is plotted in Fig. 3(d) and
shows that the global phase spreads over approximately
90°. This is the result of using a single ancilla, instead of
the two required to obtain a BEC state with an undefined
global phase. The results obtained on the real hardware
are in qualitative agreement with the ideal ones. In
particular, hSxi is a monotonously decreasing function,

while Cð2Þ
N is nonmonotonous. The distribution function

shows the correct radial and angular direction, demon-
strating a good calibration of the hardware [1]. These
results are consistent with noisy simulations that take into
account finite gate fidelities and the dephasing of the
qubits. We estimate that a reduction of the error rates by a
factor of 2 will enable us to double the number of ancillas

FIG. 2. Coherence parameters,Cð2Þ
N and hSxi, as a function of the

number of qubits coupled to the ancillas for a state with N ¼ 10
qubits and Na ¼ 3 ancillas. The red (purple) curves refer to
situation where all the ancilla are (not) postselected, leading to the
creation of the state jprojectedi (jdephasedi). The horizontal lines
correspond to the Cð2Þ

N values for these states [Eqs. (6) and (7)].

(a) (b)

(c)

(d)

(e) 

FIG. 3. (a) Circuit used to prepare a BEC state with N ¼ 4
qubits and Na ¼ 1 ancilla. The aSWAP gate performs a con-
trolled rotation of the ancilla and moves it to the next qubit.
(b) Implementation of the aSWAP gate (see text) using native
gates. (c) Coherence parameters as a function of the entangling
gates for the state jprojectedi, obtained by the protocol in (a), in
the ideal circuit and in Aspen-M-2. The error bars refer to
an average over three separate runs with N ¼ 1000 shots each.
(d)–(e) Probability distribution of Sθ in the final state of the
protocol in (a).
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and observe a BEC state with a conserved number of
particles.
Conclusion.—In this Letter, we proposed and realized

quantum circuits that simulate many-body states with long-
range coherence. A key aspect of our approch is an efficient
algorithm that measures the total number of particles
without destroying the phase coherence. Our protocol
scales favorably with the number of qubits (the numbers
of measurements and gates scales, respectively with N and
N log2N) and can be realized in state-of-the-art quantum
computers. Our study clarifies the difference between
coherent states and BEC states and shows how to identify
them using physical observables. We hope that this Letter
will contribute to the debate on the nature of the BEC of
light and its relation to lasing and superradiance.
As a key result, we found that BECs of atoms have larger

coherence than coherent states: by reducing the fluctuations
in the total number of particles, one obtains a state with a
more phase coherence. An analogous effect occurs in
superfluids and superconductors, where local interactions
are required to achieve phase stiffness [1]. To study this
connection in a superconducting quantum computer, we
plan to prepare a coherent state of many qubits and then
couple ancilla qubits to local neighbors. By measuring the
ancillas and postselecting the states with a specific out-
come, we will obtain an entangled state with long-range
phase coherence. These correlations will be immune to
local changes of the chemical potential and, hence, poten-
tially provide a noise-free resource for quantum algorithms.
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