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The crossing of a continuous phase transition gives rise to the formation of topological defects described
by the Kibble-Zurek mechanism (KZM) in the limit of slow quenches. The KZM predicts a universal
power-law scaling of the defect density as a function of the quench time. We focus on the deviations from
KZM experimentally observed in rapid quenches and establish their universality. While KZM scaling holds
below a critical quench rate, for faster quenches the defect density and the freeze-out time become
independent of the quench rate and exhibit a universal power-law scaling with the final value of the control
parameter. These predictions are verified in several paradigmatic scenarios in both the classical and
quantum domains.
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The Kibble-Zurek mechanism (KZM) is one of the
cornerstones in nonequilibrium physics, with applications
ranging fromcondensedmatter to quantumcomputing [1–7].
It predicts and explains universal scaling laws in the
dynamics across a phase transition driven by modulating a
control parameter λ across a critical point λc in a finite quench
time scale τQ. The KZM exploits the divergence of the
equilibrium relaxation time τ ¼ τ0=jϵjνz as a function of the
proximity to the critical point

ϵ ¼ ðλc − λÞ=λc; ð1Þ

τ0 is a microscopic constant. Critical slowing down is thus
characterized by the correlation-length critical exponent ν
and the dynamic critical exponent z. Thismotivates the use of
the adiabatic-impulse approximation [4,5,7,8]. According to
it, far from the critical point, both in the high and low
symmetry phases, the relaxation time is small, and the system
adjusts to a variation of the control parameter λðtÞ instanta-
neously. By contrast, near the critical point λc the system is
effectively frozen. The transition from the frozen to the
adiabatic stages is estimated by the KZM to occur at the
freeze-out timescale, identified bymatching the time elapsed
after crossing the critical point to the instantaneous relaxation
time, t̂ ¼ τ½λðt̂Þ�. Linearizing the quench around the critical
point so that λðtÞ ¼ λcð1 − t=τQÞ and ϵðtÞ ¼ t=τQ, one finds
that the freeze-out timescales as

t̂ ∼ ðτ0τzνQ Þ
1

1þzν: ð2Þ

As the order parameter begins to grow significantly, amosaic
of domains forms. According to the KZM, the average

domain size ξ̂ is set by the equilibrium correlation length of
the order parameter at λðt̂Þ, i.e., ξ̂ ¼ ξ½λðt̂Þ�. At the interface
between adjacent domains, topological defects aregenerated.
Consider pointlike topological defects such as kinks and
vortices. The equilibrium scaling law for the correlation
length reads as ξðλÞ ¼ ξ0jϵj−ν, where ξ0 is a microscopic
constant. Evaluating it at the freeze-out time t̂, the average
domain size is set by ξ̂ ¼ ξ0ðτQ=τ0Þ½ν=ð1þzνÞ� and determines
the average defect density n after the phase transition

n ∼
1

ξ½λðt̂Þ�d ∝ τ
− dν
1þzν

Q ; ð3Þ

where d is the spatial dimension. This universal scaling law
as a function of the quench rate is the key prediction of the
KZM. It has been experimentally tested in several systems,
such as liquid crystals [9–11], superfluid helium [12–15],
Josephson junctions [16–19], thin film superconductors
[20,21], a linear optical quantum simulator [22], trapped
ions [23–25], quantumannealers [26,27], and ultracold gases
[28–33]. It was recently proposed [34,35] that the fluctua-
tions of n are universal and described by a distribution in
which the mean, the variance, and all other cumulants inherit
the power-law scaling with the quench time predicted by the
KZM. These universal features beyond the scope of the
conventional KZM have been observed in simulations
[34–41] and confirmed in experiments [27,42–44].
In addition to the verification of the KZM scaling,

deviations from the KZM predictions have also been
reported. These are relevant to applications involving
quenches at fast and moderate rates. Numerical simulations
indicate the breakdown of the KZM scaling laws with the
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onset of a plateau in which the defect density is indepen-
dent of the quench rate, e.g., in confined ion chains [45,46],
a holographic superconducting ring [47], and a one-
dimensional quantum ferromagnet [48]. As long as the
quench time is shorter than the timescale in which the order
parameter grows, the defect formation dynamics is insen-
sitive to the quench rates and yields a constant defect
density [49]. Experimentally, deviations from KZM have
been observed in ultracold Bose and Fermi gases driven
through the normal-to-superfluid phase transition by a
rapid quench [32,33,43,50].
One may argue that even pointlike topological defects

are characterized by a finite healing length. Intuitively,
there is a maximum number of defects that a system of
finite size can support. However, deviations from KZM
occur at densities well below those at maximum packing. A
plausible explanation of the plateau relies on the fast
relaxation of defects at high densities via the annihilation
of pairs with opposite topological charge (e.g., vortices and
antivortices in a superfluid) and the presence of coarsening
[49,51–54]. In experiments with superfluid gases, it is
challenging to detect individual vortices in a turbulent
condensate after a fast quench [32,33,43,45,55]. Using
two-rate driving schemes, first proposed in Ref. [56], the
onset of the plateau in recent Bose gas experiments [43] has
been attributed to early-time coarsening before the freeze-
out timescale [50].
A quantitative understanding of fast quenches is cur-

rently lacking. What is the exact mechanism leading to the
emergence of the plateau in the defect density? At what
quench rates do the KZM scaling laws break down? How
does the plateau value of the defect density depend on the
depth of the quench? Are any of these features universal?
We introduce an extension of KZM that addresses all of
these questions.
Universal deviations from KZM in a fast quench.—The

KZM identifies the timescale t̂ in which the system begins to
partition into independent domains, whose average size is set
by the nonequilibrium correlation length ξ̂. Heuristically,
KZM assumes that the instantaneous relaxation time in
the broken symmetry phase becomes arbitrarily small as
the quench progresses. Building on this assumption and the
adiabatic-impulse approximation, the freeze-out time t̂ in
Eq. (2) and all other nonequilibrium quantities, such as ξ̂ and
n in Eq. (3), inherit a universal scaling with the quench time
τQ. However, realistic quenches in numerical simulations
and experiments terminate at a finite value of the control
parameter λf, which sets a lower limit to the relaxation time in
the broken symmetry phase; see Fig. 1. For quenches of finite
depth, we propose that the freeze-out time is set by

t̂ ∼maxfτ½λðt̂Þ�; τðλfÞg: ð4Þ

For rapid quenches, the system is characterized by a single
value of the freeze-out time

t̂ ∼ τðλfÞ ∝ ϵ−zνf ; ð5Þ

independent of the quench time τQ, where ϵf ¼ ðλc − λÞ=λc.
As a result, in the spirit of KZM, the average domain size for
different quench rates is set by the equilibrium correlation
length ξ̂ ¼ ξðλfÞ, which naturally explains the plateau of
defect density that appears in the limit of rapid quenches.
This allows us to predict the relationship between defect
density and the final value of the control parameter λf setting
the plateau value

n ∼
1

ξðλfÞd
∝ ϵdνf ; ð6Þ

which is universal and independent of the quench time; see
also Ref. [49] for a related result in holographic systems. We
define the first critical quench rate τc1Q by equating the time at
which the quench ends at λf, tf ¼ τc1Q ðλc − λfÞ=λc, to the
relaxation time at λf. The condition

τc1Q

�
1 −

λf
λc

�
¼ τ0

jϵfjzν
ð7Þ

yields the expression for the critical quench rate

τc1Q ∝ ϵ−ðzνþ1Þ
f : ð8Þ

According to the picture (Fig. 1), the defect density is a
constant when the quench time is shorter than τc1Q ,
and abruptly turns into the KZM power law for

0

KZM power
law region

fast
quench
region

FIG. 1. Universal breakdown of KZM at fast quenches. The
KZM relies on the adiabatic impulse approximation to determine
the freeze-out time t̂, by equating the time elapsed after crossing
the phase transition to relaxation time. For slow quenches, t̂ is
given by the power law [Eq. (2)]. For fast quenches of finite depth
λf , it is set by the equilibrium relaxation time with t̂ ∼ τðλfÞ, and
becomes independent of the quench time. Thus, the density of
defects saturates at a plateau, leading to the breakdown of the
KZM scaling relations at fast quenches.
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τQ > τc1Q . The critical quench rate τc1Q can also be defined as
the intersection point of the plateau and the KZM power
law. Indeed, by equating Eqs. (3) and (6), Eq. (8) is
recovered. We distinguish τc1Q from a well-understood
second critical quench time associated with the onset of
adiabaticity when the nonequilibrium correlation length is
comparable to system size, ξðt̂Þ ∼ L, in the limit of slow
quenches; see, e.g., Ref. [57]. We have thus identified
universal deviations of the KZM at fast quenches. The
quantities t̂ and n exhibit a universal scaling relation with
the depth of the quench and are independent of the quench
rate. We note that this dependence is not a feature predicted
by the conventional KZM but may be present in the scaling
regime [45,46,58]. In what follows, we verify these
predictions in three paradigmatic models of phase tran-
sitions in one and two spatial dimensions.
Fast dynamics of spontaneous parity breaking.—

Consider a lattice version of a one-dimensional ϕ4 theory
describing a second-order phase transition that involves
spontaneous parity breaking, a canonical testbed for KZM
scaling [35,59,60]. The equilibrium critical exponents take
the mean-field values ν ¼ 1=2 and z ¼ 2. This model is of
relevance to structural phase transitions between a linear
phase and a zigzag phase, exhibited by confined ion chains
[45,46], Wigner crystals, and colloids. It involves a real
scalar field ϕlðtÞ with l ¼ 1;…; L, and the global potential

Vðfϕlg; tÞ ¼
XL
l¼1

1

2
½λðtÞϕ2

l þ ϕ4
l � þ c

XL−1
l¼1

ϕlϕlþ1; ð9Þ

where λðtÞ is the control parameter. With coupling constant
c ¼ 1=2, the critical point is λc ¼ 2c, and in the high-
symmetry linear phase, where λ > λc, the order parameter
vanishes, i.e., hϕli ¼ 0 for all l; see, e.g., Refs. [35,59]. By
contrast, the case λ < λc describes a doubly degenerate
broken-symmetry zigzag phase. Varying λðtÞ across the
critical point gives rise to the formation of Z2 kinks.
Consider the linear ramp λðtÞ ¼ λcð1 − t=τQÞ. The time
evolution is described by the coupled Langevin equations

ϕ̈l þ η _ϕl þ ∂ϕl
Vðfϕig; tÞ þ ζl ¼ 0; ð10Þ

and is characterized by a dissipation strength η and noise
fluctuations described by real Gaussian processes fulfilling
ζlðtÞ ¼ 0 and ζlðtÞζmðt0Þ ¼ 2ηTδlmδðt − t0Þ. Numerical
integration is used to generate an ensemble of 50 000
trajectories in which to study the density of kinks and its
dependence on τQ, choosing L ¼ 100, η ¼ 50, and
T ¼ 2 × 10−5. A typical single realization of the order
parameter after crossing the phase transition is shown in the
inset of Fig. 2(a), where the kinks separate adjacent zigzag
domains. Figure 2 further shows the breakdown of the
KZM scaling law [Eq. (3)] at fast quenches. The density of
defects at the plateau exhibits a universal power-law scaling

with the depth of the quench ϵf in agreement with the

universal prediction n ∝ ϵ1=2f [Eq. (6)]. Figure 2 also shows
that the corresponding freeze-out timescales universally at
fast quenches according to Eq. (5) with the quench depth.
Specifically, t̂ ∝ ϵ−1f where the t̂ is identified in the
simulations as the time when the order parameter begins
to grow rapidly [47,61].
Rapid quenches in a quantum Ising chain.—Let us next

explore the universal behavior with fast quenches in the
quantum realm, choosing as a testbed the quantum Ising
chain,

H ¼ −J
XL
l¼1

½gðtÞσxl þ σzlσ
z
lþ1�; ð11Þ

used to test the KZM in a quantum phase transition
theoretically [62,63], as well as in recent experiments
using programmable quantum annealers [26,27]. Here
σxl , σ

z
l are Pauli operators, J > 0 is the Ising ferromagnetic

coupling, and gðtÞ acts as a magnetic field that favors spin
alignment along the x axis. We assume periodic boundary
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FIG. 2. Universal breakdown of KZM at fast quenches in a one-
dimensional ϕ4 model in Log-Log plots. (a) The dependence of
the density on the quench time is shown for three different values
of λf ¼ −2;−1.5;−1, from top to bottom. The inset shows a
single realization of the scalar field ϕl, in the zigzag phase with
excitations in the form kinks (at the interface of adjacent zigzag
domains) after crossing the phase transition. In the KZM scaling
regime, n ¼ ð21.1� 0.4Þτ−0.245�0.007

Q , while the onset and value
of the plateau depend on λf . The value of the density (b) and the
freeze-out time (c) at the plateau, as well as the first critical
quench rate τc1Q (d), exhibit a universal power-law scaling
with the quench depth. The plateau data are fitted by
nðλfÞ ¼ ð2.53� 0.04Þϵ0.494�0.005

f , t̂ ¼ ð628� 11Þϵ−0.95�0.03
f , and

τc1Q ¼ ð5022� 57Þϵ−1.99�0.02
f .
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conditions σ⃗Nþ1 ¼ σ⃗1 and consider a linear quench gðtÞ ¼
gi − t=τQ across gc ¼ 1 to drive the quantum phase
transition from the paramagnetic phase (gi > gc) to a
ferromagnet. The breaking of parity symmetry gives rise
to the formation of Z2 kinks [64], but under unitary
dynamics, these are described by coherent quantum exci-
tations [62,63,65].
By adopting the Jordan-Wigner transformation, themodel

can be rewritten in terms of spinless fermions, and the
dynamics described by time-dependent Bogoliubov-de
Gennes equations [62,66]. According to the KZM, kinks
appear in pairs under periodic boundary conditions.We focus
on the ferromagnetic case, where the number of kink pairs is
described by the operator

P̂ ¼ 1

4

XL
j¼1

ð1 − σzjσ
z
jþ1Þ; ð12Þ

whereL is the total number of sites. The expectation value of
this operator in the nonequilibrium state resulting from the
crossing of the quantum phase transition exhibits the KZM
scaling law P ¼ hP̂i ∝ τ−1=2Q , with the equilibrium critical
exponents z ¼ 1, ν ¼ 1 [63]. Following Refs. [62,63], we
confirm the scaling law and report the onset of a plateau at
fast quenches by numerically solving the dynamical
Bogoliubov-de Gennes equation, by quenching the system
from a paramagnetic phase to an antiferromagnet state, with
size L ¼ 1000 and other parameters chosen to be J ¼ 1,
gi ¼ 2, and gf ¼ 0; see Fig. 3(a). The predicted fast-quench
scalingP=L ∝ ϵdνf is also supported as in Fig. 3(b). Thus, our
findings also hold in the quantum regime as we have verified
in the 1D transverse field Ising model.
Vortex density saturation in two spatial dimensions.—To

verify the universality of the fast-quench dynamics in two
spatial dimensions, we analyze the spontaneous vortex
formation in a newborn scalar superfluid, associated with
the spontaneous breaking of U(1) symmetry. To this end,
we use a mean-field description supplemented by thermal
fluctuations, that seed symmetry breaking. Specifically, we
consider the stochastic Gross-Pitaevskii equation [67],
previously used to test KZM [61,68–71]. In two spatial
dimensions, it reads as

ði− γÞ∂ϕ
∂t

¼ −
1

2

�
∂
2ϕ

∂x2
þ ∂

2ϕ

∂y2

�
þ λðtÞϕþ g̃jϕj2ϕþ ηðx⃗; tÞ;

ð13Þ

where ϕ ¼ jϕðx⃗Þjeiθðx⃗Þ is the condensate wave function, γ
represents the dissipation rate, g̃ sets the strength of
the nonlinearity, and ηðx⃗; tÞ is the thermal noise satisfying
the fluctuation-dissipation relation hηðx⃗; tÞη�ðx⃗0; t0Þi ¼
2γTδðx⃗ − x⃗0Þδðt − t0Þ. The control parameter inducing the
transition is the chemical potential −λðtÞ. The critical point

is located at λ ¼ 0, below which ϕ acquires a finite value, in
agreement with the Ginzburg-Landau theory of continuous
phase transition. The critical exponents take the mean-field
values ν ¼ 1=2, z ¼ 2. We induce the phase transition by
quenching λ as

λðtÞ ¼ −
t
τQ

; ð14Þ

from an initial value λ ¼ 0 to a finite final one λf < 0, and
allow the system enough time to thermalize initially and
stabilize eventually from initial vanishing ϕ with small
fluctuation hδϕðx⃗Þδϕ�ðx⃗0Þi ¼ 10−6δðx⃗ − x⃗0Þ. Numerically,
100 trajectories are generated by integrating Eq. (13), with
a system size L ¼ 100 in the spatial directions x and y, and
using 316 Fourier modes. In the time direction, the fourth-
order Runge-Kutta method is used with a time step
Δt ¼ 0.025. The newborn 2D superfluid is proliferated
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FIG. 3. Universal deviations from the KZM in the 1D trans-
versal field Ising model after a fast thermal quench. (a) The KZM
power-law scaling of the kink density is interrupted by the onset
of a plateau as the quench time is reduced. A fit to the data reads
P=L ¼ ð0.14� 0.03Þτ−0.54�0.05

Q in the KZM regime. (b) In the
fast quench case, the kink density is independent of the quench
rate and scales universally with the quench depth ϵf , with data
fitted to P=L ¼ ð0.177� 0.004Þϵ0.99�0.05

f .

(a) (b)

FIG. 4. Universal deviations from the KZM in a 2D superfluid
after a fast thermal quench. (a) The vortex number is independent
of the quench rate and scales universally with the quench depth
ϵf . A fit to the data reads nλf ¼ ð1100� 5Þϵ0.99�0.01

f . (b) Corre-
sponding universal scaling of the freeze-out time as function of
ϵf , with data fitted to t̂ ¼ ð35.9� 0.2Þϵ−0.99�0.03

f . The inset shows
the distribution of vortices in a single realization.
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by vortices as shown in the inset of Fig. 4. Choosing
T ¼ 2 × 10−3, g̃ ¼ 1, and γ ¼ 1, the universal scaling laws
governing the plateau of the vortex density at fast quenches
are characterized as a function of the quench depth in
Fig. 4. Panels (a) and (b) report the scaling behavior of the
vortex density and freeze-out time matching the predictions
n ∝ ϵdνf and t̂ ∝ ϵ−νzf when d ¼ 2, ν ¼ 1=2, z ¼ 2 accu-
rately. Thus, this numerical example confirms the univer-
sality of the fast-quench critical dynamics in two spatial
dimensions. Notice that the KZM predicted nðτQÞ ∝ τ−1=2Q

with fixed Tf is found (not shown here), which matches the
observation in Refs. [61,69–71].
Discussion and summary.—We have established the

universality of deviations from the KZM occurring at fast
quenches across a continuous phase transition, observed in
recent experiments. As a result of these deviations, the
power-law scaling predicted by the KZM for the defect
density as a function of the quench rate is interrupted by the
onset of a plateau for quenches exceeding a critical quench
rate. The plateau defect density, associated freeze-out time,
and the critical quench rate are found to scale with the
amplitude of the quench following universal power laws.
We have confirmed these predictions in a classical lattice
ϕ4 model of relevance to ion chains, as well as a one-
dimensional quantum Ising chain, thus establishing the
universality of fast critical dynamics in the quantum
domain. In addition, we have verified the universal scaling
at fast quenches in two spatial dimensions by characterizing
the saturation of the vortex density in a newborn superfluid.
Our results broaden the application of equilibrium

scaling theory to nonequilibrium phenomena in the limit
of fast quenches, without restrictions to slow driving or
adiabatic perturbation theory. The scaling laws predicted
here are directly testable in any platform previously used to
explore KZM in either the classical or quantum regimes,
such as trapped ions [23–25,42], colloids [72], ultracold
gases [28–33], multiferroics [73,74], Rydberg quantum
simulators [75], and annealing devices [26,27].

This work is supported by the National Natural Science
Foundation of China (under Grant No. 12275233).
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